
Text Searching

• Thus far, we’ve seen how to pre-process texts 
(stemming, “stopping” words, compressing, etc)

• We’ve also seen how to build, process, improve 
and assess the quality of queries and the 
returned answer sets

• We also saw how to effectively index the texts
• Now, how do we search text ?  It goes beyond 

searching the indices, specially in the cases 
where the indices are not enough to answer 
queries (e.g., proximity queries)



Sequential Searching

• If no index is used this is the only option, 
however sometimes (e.g., when blocking is 
used) it is necessary even if an index exists

• The problem is “simple”
• Given a pattern x of length m and a text y of length 

n (n >> m) find all positions in y where x occurs

• There is much more work on this than we can 
cover, including many theoretical results.  Thus 
we will discover some well known approaches



Brute Force

• The name says it all …
• Starting from all possible initial positions (i.e., all positions), check whether 

the pattern could start at that position
• It takes O(mn) time in the worst case:

• For instance when αm-1b is searched in αn for any two symbols α,b.  
• O(n) in the average case – not that bad 
• The most important thing is that it suggests the use of a sliding window 

over the text.  The idea is to see whether we can see the pattern through 
the window
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BRUTE_FORCE_MATCHER(x,m,y,n)
1. For p from 0 up to n-m
2. loop if y[p..p+m-1]=x
3. then report p



The Karp-Rabin Algorithm
• Hashing: a simple method for avoiding a quadratic number of symbol 

comparisons in most practical situations. 
• At each position p of the window on the text, check if the part of the text delimited 

by the window y[p . . p + m – 1] "looks like" x. 
• Use a hash function to check the resemblance 
• The hash function should be highly discriminating for strings. 
• The function should also have the following properties:

• To be efficiently computable;
• Easy computation of the value associated with the next part of the text from 

the value associated with the current part.
• If Σ is the alphabet of input symbols, the hash function h:
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• Search for pattern x: compare the value h(x) with the hash value associated each 
part of length m of text y. 

• If the two values are equal: necessary to check whether this part of the text is 
equal to x or not by symbol comparisons



The Karp-Rabin algorithm (cont.)

• Searching for the pattern x = sense in the text y = “nο defense for sense”:
• c = 256 (ASCII code), and the values of 
• q and d are set respectively to 31 and 2. 
• h(x) = (115 x 16 + 101 x 8 + 110 x 4 + 115 x 2 + 101) mod 31 = 9.
• h(y[4.. 8])=h(y[I5.. 19])= h(x): two string-tο-string comparisons against x are 

performed.

• The value of symbols ranges from 0 to c-1

• The quantity (c-1) x q is added in line 8 to 
provide correct computations on positive integers

• Convenient values for d are powers of 2:

• in this case, all the products by d can be 
computed as shifts on integers. 

• The value of q is generally a large prime (such 
that the quantities (q - 1) x d + c - 1 and c x q - 1 
do not cause overflows), 



The Knuth-Morris-Pratt Algorithm
• The first algorithm with linear worst-case behaviour, 
• On average it is not much faster than Brute-Force (BF) algorithm. 
• Sliding window over the text: however, it does not try all window positions as BF 

does. 
• It reuses information from previous checks.
• After the window is checked, a number of pattern letters were compared to the text 

window, and they all matched except possibly the last one compared. 
• Hence, there is a prefix of the pattern that matched the text. 
• The algorithm takes advantage of this information to avoid trying window positions 

which can be deduced not to match.
• The pattern is preprocessed in O(m) time and space to compute a function called ψ.
• ψ( i): the length of the longest proper prefix of x0..i-1 which is also a suffix and the 

characters following prefix and suffix are different. 

• Hence i - ψ[i] window positions can be safely skipped if the characters up to i - 1
matched, and the i-th did not:
• Crucial observation: this shift depend only on the pattern, because if the text in

the window matched up to position i - 1, then that text is equal to the pattern
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The Knuth-Morris-Pratt Algorithm (Cont.)

• Searching for the pattern x = abcababcababa. 
• (a) The window on the text y at position 3. Α mismatch occurs at position 10 on x. The matching 

symbols are shown darkly shaded, and the current analyzed symbols lightly shaded. We should 
shift the window 8 positions to the right. The string-to-string comparison resumes at position 2 on
the pattern. 

• (b) The prefixes of x that are suffixes of x [0.. 9] = abcabacbab are right-aligned along the 
discontinuous vertical line. String x[0.. 4] = abcab is a suffix of x [0 . . 9], but is followed by symbol a 
which is identical to x [10]. String x[0..1] is the expected prefix, since it is followed by symbol c.

• (c) The values of the function ψ for pattern x.



The Boyer-Moore Algorithm
• The most efficient string-matching algorithm in usual applications. 
• Α simplified version of it, or the entire algorithm, is often implemented in text editors for the 

"search" and "substitute" commands.
• The scan operation proceeds from right to left in the window on the text, instead of left to 

right as in the Knuth-Morris-Pratt algorithm. 
• In case of a mismatch, the algorithm uses two functions to shift the window:

• good-suffix shift function 
• bad-symbol shift function.

• Good-suffix shift function:
• Let p be the current (left) position of the window on the text. Assume that a mismatch 

occurs between symbols y[p + i] and x[i] for some i, 0 ≤ i ≤ m-1:
• y[p + i] ≠ x[i] and y[p + i + 1.. p + m - 1] = x [i + 1 . . m - 1]. 

• Good-suffix shift: align y [p + i + 1 . . p + m - 1] with its rightmost occurrence x [k + 1 . . 
m - 1 - i + k] in x preceded by a symbol x[k] different from x[i] to avoid an immediate 
mismatch. 

• If no such occurrence exists, align the longest suffix of y[p + i + 1 … p + m - 1] with a 
matching prefix of x. The good-suffix shift function β is defined by
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The Boyer-Moore Algorithm
• The good-suffix shift in the Boyer-

Moore algorithm when searching for the 
pattern x = babacbababa. 

• (a) The window on the text is at position 
4. The string-to-string comparison, 
which proceeds from right to left, stops 
with a mismatch at position 7 on x. 

• The window is shifted 9 positions to the 
right to avoid an immediate mismatch. 

• (b) Indeed, the string x [8 . . 10] = aba is 
repeated three times in x, but is 
preceded each time by symbol x [7] = b. 
The expected matching substring in x is
then the prefix ba of x. The substrings
of x identical with aba and the prefixes 
of x ending with a suffix of aba are right-
aligned along the rightmost 
discontinuous vertical line. 

• (c) The values of the shift function β for 
pattern x.



The Boyer-Moore Algorithm (cont.)
• Bad-symbol shift function:

• Τext symbol y[p +i] that causes a mismatch. 
• Assume that this symbol occurs in x [0…i- 1]. 
• let k be the position of the rightmost occurrence of y[p + i] in x[0.. i - 1]. 
• The window can be shifted i - k positions to the right without missing an occurrence 

of x in y. Assume now that 
• If symbol y[p + i] does not occur in x[0…i-1], no occurrence of x in y can overlap the 

position p + i οn the text, and thus, the window can be shifted i + 1 positions to the 
right. 

• Let δ be the table indexed on alphabet Σ and {0,..,m-1}, and defined for each 
symbol α Σ and i by

[ , ] min{ } { 1 | 0 , [ ] }a i m m j j i x j aδ = ∪ − − ≤ < =

Searching for the pattern x = babacbababa. 
a) The window on the text at position 4. 

Mismatch at position 9 on x.
y[13] = c -> shift the window 5 positions to the right. 
Notice that if the unexpected symbol were a or d, the applied shift would have been 1 and 10
respectively. 

b) The values of the table δ for pattern Χ when alphabet Σ is reduced to { a, b, c, d}.



The Boyer-Moore Algorithm (cont.)

• Pattern preprocessing time and space: O(m+|Σ|) where |Σ| is the size of the 
alphabet Σ

• O(nm + |Σ|) worst-case run time, O((n log m)/m) on average
• The worst case is unlikely in English text
• Boyer-Moore’s algorithm is significantly faster than the brute-force algorithm 

on English text



(a) Matching the pattern “reminiscence” against a text by comparing characters in a right-tο-left manner. The shift s 
is invalid. Although a "good suffix" “ce” of the pattern matched correctly against the corresponding characters in
the text (matching characters are shown shaded), the "bad character" “i”, which didn't match the corresponding 
character “n” in the pattern, was discovered in the text. 

(b) The bad-symbol heuristic proposes moving the pattern to the right, if possible, by the amount that guarantees 
that the bad text character will match the rightmost occurrence of the bad character in the pattern. In this 
example, moving the pattern 4 positions to the right causes the bad text character “i” in the text Ιο match the 
rightmost “i” in the pattern, at position 6. If the bad character doesn't occur in the pattern, then the pattern may 
be moved completely past the bad character in the text. 

(c) With the good suffix heuristic, the pattern is moved tο the right by the least amount that guarantees that any 
pattern characters that align with the good suffix “ce” previously found in the text will match those suffix 
characters. In this example, moving the pattern 3 positions tο the right satisfies this condition. Since the good 
suffix heuristic proposes a movement of 3 positions, which is smaller than the 4-position proposal of the bad-
character heuristic, the Boyer-Moore algorithm increases the shift by 4.

Another example of the 
Boyer-Moore heuristics.



The Aho-Corasick algorithm

• An extension of Knuth-Morris-Pratt in matching a set of patterns. 
• The patterns are arranged in a trie-like data structure.
• Each trie node corresponds to matching a prefix of some 

pattern(s).
• There is also a set of failure transitions:

• Those transitions go between nodes of the trie. 
• A transition from a node representing the prefix z to a node representing a 

prefix y:
• y is the longest prefix in the set of patterns which is also a proper suffix of z. 

Aho-Corasick trie example for the 
set ‘ace’, ‘as’ and ‘ease’ showing  all 
failure transitions



The Aho-Corasick algorithm (cont.)
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Finite Automaton

• Definition 3 A finite automaton is a 5-tuple, M = (Q, q0 ,A,Σ, δ), 
where

• Q is a finite set of states.
• q0 ∈ Q is the start state.
• A ⊆ Q is the distinguished set of accepting states.
• Σ is a finite input alphabet.
• δ : Q × Σ→ Q is the transition function of M.
• A finite automaton M induces a function φ : Σ∗ → Q
(called final-state function) such that

• φ(ε) = q0
• φ(wa) = δ(φ(w), a) for w ∈ Σ*, a ∈ Σ

• φ(w) is the state M ends up after scanning the string w
• M accepts w if and only if φ(w) ∈ Α



Example of finite automaton

• Given an input alphabet Σ = {a, b} and state set 
Q = {0, 1}, where q0 = 0 and A = {1}. The 
transition function is defined as follows:

• The automaton accepts the string that end in an 
odd number of a’s



Suffix Function

• Definition. Given pattern P[1 . . . m], σ : Σ∗ →
{0, 1, · · · ,m} as follows:

σ(x) = max{k| Pk is a suffix of x}
is called a suffix function corresponding to P.
• Example. For P = ab, we have σ(ε) = 0,
σ(ccaca) = 1, σ(ccab) = 2.

• Properties: 
• If x is a suffix of y, then σ(x) ≤ σ(y).
• σ(x) = m iff P is a suffix of x.



String-matching Automaton

• The state set Q is {0, 1, · · · ,m}, where
• q0 = 0 and A = {m}.
• The transition function δ is defined as

δ(q, a) = σ(Pqa)
for any state q and character a.
• Theorem. If φ is the final-state function of a 

string-matching automaton for a given pattern P 
and T[1 . . . n] is an input text for the automaton, 
then for i = 0, 1, · · · , n, we have

φ(Ti) = σ(Ti)



Example of String-matching Automaton



Finite Automaton Algorithm

• The matching time is Θ(n)
• The transition function δ can be computed in O(m3|Σ|) time



Shift-Or Algorithm

• Using bit-parallelism
• simulate the operation of non-deterministic automaton that 

searches the pattern in the text.
• algorithm

• builds a table B which for each character stores a bit mask bm…b1. 
• The mask in B[c] has the i-th bit set to zero iff pi=c.

• The state of the search is kept in a machine word D=dm…d1

• << : shifting all the bits in D one position to the left and setting the right 
most bit to zero

• A match is reported whenever dm is zero.

][|)1(' jTBDD <<←



Shift Or Example(1)

patt
ern

text

a

d

b

a

c

b acbac

ba

11011B[c]

11111B[*]

01101B[b]

1B[a] 0 1 0 1

a b c ba 01101B[a]

01111D’

1D<<1 1 1 1 0

10110B[b]

10111D’

1D<<1 1 1 0 0

11011B[c]

11011D’

0D<<1 1 1 1 0

11111B[d]

11111D’

1D<<1 1 1 1 0



Shift-Or Example(2)

10110B[b]

10110D’

1D<<1 0 1 0 0

11011B[c]

11011D’

0D<<1 1 1 1 0

01101B[a]

01101D’

1D<<1 1 0 1 0

patt
ern

text

a

d

b

a

c

b acbac

ba

a b c ba

match

11011B[c]

11111B[*]

01101B[b]

1B[a] 0 1 0 1

01101B[a]

01101D’

1D<<1 1 0 1 0



String Matching Allowing Errors
• Approximate string matching: 

• given a string P=p1p2…pm of length m, a string T=t1t2…tn of 
length n, match P to T with minimum number of errors 
(Levenshtein distance). 

• The classical solution to approximate string matching is based 
on dynamic programming:

• Matrix C[0..m, 0..n] where C[i,j]  represents the minimum number of 
errors needed to match P1..i to T1..j

0 if 0, 0 
[ 1,0] ( ) if 0

[ , ]
[0, 1] ( ) if 0

min{ [ 1, 1] ( , ), [ 1, ] ( ), [ , 1] ( )}

where ( , ) is the cost of substituting  with , ( ) the cost of deleting 
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String Matching Allowing Errors (Cont.)

• The dynamic programming algorithm to compute the 
edit distance between “survey” and “surgery”. The bold 
entries show the path to the final result

• O(mn) the running time of the algorithm
• Only O(min(m,n)) the space requirement: only the 

previous column or row must be stored in order to 
compute the new column or row respectively.



String Matching Allowing Errors (cont.)

• The dependencies in the dynamic programming recurrence may be represented by a 
lattice graph

• The vertex in position (i,j) of the lattice graph represents entry (i,j) of the cost matrix. 
• Each edge of the lattice graph is assigned a weight equal to the cost of the 

corresponding edit operation.
• The weights are obtained as follows:

• The weight of an edge of type <(i-1,j) ,(i,j)> is D(pi)
• An edge  of type <(i-1,j-1) ,(j-1)> has weight S(pi,tj)
• The weight of an edge of type <(i ,j-1) ,(i,j)> is I(tj)

• Cost(i,j) is the length of a shortest path from vertex (0,0) to vertex(i,j)
• A match is reported at text positions j such that C[m,j]<=k
• O(mn) the execution time of the algorithm
• O(m) space: only the previous column of the matrix is needed.



Text Searching allowing errors
• How to adapt the previous algorithm to search a short pattern P[1..m] in a long text T[1..n]?
• Algorithm is basically the same:

• Set C[0,j]=0 for all j=0…n → begin matching after the first j characters of text.
• All other expressions are the same

• The dynamic programming algorithm to search “survey” in the text “minor surgery” with two 
errors.
• Bold entries indicate matching text positions

m i n o r ⊔ s u r g e r y
0 0 0 0 0 0 0 0 0 0 0 0 0 0

s 1 1 1 1 1 1 1 0 1 1 1 1 1 1
u 2 2 2 2 2 2 2 1 0 1 2 2 2 2
r 3 3 3 3 3 2 3 2 1 0 1 2 2 3
v 4 4 4 4 4 3 4 3 2 1 1 2 3 3
e 5 5 5 5 5 4 5 4 3 2 2 1 2 3
y 6 6 6 6 6 5 6 5 4 3 3 2 2 2



Text Searching allowing errors (cont.)

• An non-deterministic finite automaton (NFA) for approximate string 
matching of the pattern ‘survey’ with two errors

• Unlabeled transitions match any character
• Horizontal arrows represent matching a character
• Vertical arrows represent insertions into the pattern
• Solid diagonal arrows represent replacements
• Dashed diagonal arrows represent deletions in the pattern

s u r v e y

s u r v e y

s u r v e y

ε ε ε ε ε ε

ε ε ε ε ε ε

no errors

1 errors

2 errors



Regular Expressions 

• O(m) the size of the non-deterministic finite automaton, where m is the length 
of the regular expression

• O(m2m) the size and the construction time of the deterministic finite automaton

• O(n) the time of searching any regular expression in text of n characters

The non-deterministic (a) and deterministic (b) automata for the regular
expression bb*(b I b*a).



Tradeoff of index space versus word 
searching time
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