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Searching the Web

Challenges of Web Searching

• The Web is huge
– Google indexes over 4 billion pages
– Some estimate search engines only reach 16% 

of web
• The Web is dynamic

– About 23% of pages change daily
– In .com domain, pages average 10 day half-life 

(half the pages gone in 10 days)
• The Web is open

– Anyone can post pages on any topic at any 
time 
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Modeling the Web

• Heaps’ and Zipf’s laws are valid in the Web too, but:
– Vocabulary grows faster (β is larger);
– Words distribution is more biased (θ value is larger);

• Distribution of document sizes:
– Probability of finding a document of size x bytes:

• - average (9.357)       - standard deviation (1.318)
– Pareto distribution:

• α and k are parameters of the distribution: α=1.1 and k=9.3 Kb for the Web
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Modeling the Web (Cont.)

• In-degree of page: the number of pages pointing to this page
• Out-degree of page: the number of hyperlinks contained in this page
• The fraction of web pages with in-degree/out-degree i is 

proportional to 1/ix for some x > 1:
– x=2.1 for in-degree distribution
– x=2.72 for out-degree distribution

• The average out-degree is about 7.2.
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Modeling the Web (Cont.)
• Strongly-connected component: set of pages 

such that for all pairs of pages (u,v) in the set, 
there exists a directed path from u to v:

– a surfer can follow hyperlinks to surf from u to v
• The web as a bowtie:

– SCC is a giant strongly connected component. 
– IN consists of pages with paths to SCC, but no

path from SCC:
• new pages  that link to interesting 

destinations on the web, but which have 
not yet been discovered by the core of the 
web and are therefore not reachable from 
the SCC.

– OUT consists of pages with paths from SCC, 
but no path to SCC:

• pages of corporate internets which are 
well-known, but whose links point only 
internally

– TENDRILS consists of pages that cannot surf to 
SCC, and which cannot be reached by surfing 
from SCC:

• the web has not yet discovered these 
pages, and these pages do not contain 
interesting links back to better-known 
regions of the web

Search Engine Architecture
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Search Engine Components
• Crawler – downloads pages from the web

– URL Chooser – decides which page to download next
• Web Page Repository – stores full HTML of downloaded 

pages
• Indexer – extracts words and links from pages, associating 

them with URLs
• Document (Text) Index – stores mapping from keywords to 

URLs
• Link (Structure) Index – stores a representation of the 

directed graph formed from links between pages
• Query Engine – receives keyword search terms from user to 

find matches in Document Index
• Page Ranking – uses hyperlink analysis to rank the pages 

that match a particular query

Browsing
• Web coverage provided by 

directories is very low;
(less than 1% of all pages)

• Yahoo! – the largest directory:
– ~1 mil.pages classified;
– Pages are submitted, 

reviewed and added;
– Advantage:

• if found, the answer will 
be useful in most cases;

– Disadvantage:
• classification is not 

specialized enough;
• not all Web pages are 

classified;
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Metasearch

• Web server that sends query 
to 
– Several search engines
– Web directories
– Databases

• Example: Metacrawler
• Collect results
• Unify them (Data fusion)
• Aim: better coverage
• Issues

– Translation of query
– Uniform result (fusion 

rankings, e.g. pages 
retrieved by several 
engines)

Search engines

Portal sites

Popularity of Search engines 
and Portal Sites (April 2004)

• In addition to searching, 
portal sites usually offer 
web directories, web mail, 
news etc.
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Information Retrieval Applied to the 
Web

• Web pages contain additional information besides just 
plain text

• Use HTML formatting tags to infer importance of terms in 
page, and weight accordingly
– Headings and bold terms are more important than paragraph text
– Include link text in page that is linked to

• Links often constitute better description of the page than the page 
itself does

• Construct inverted index
– Set of inverted lists, one for each word
– Maps word to a sorted list of locations (page IDs and position of 

word in page)

Classic Information Retrieval 
Assumptions

• Set of documents well-managed
– Size relatively fixed (and not that large)
– Most documents are high quality, not much 

junk
– Documents are relatively self-describing



7

Problems using IR for Web Search

• The Abundance Problem
– The web is too big, number of pages that can reasonably be 

returned as relevant is far too much for a human to process
– The web contains a lot of junk, anyone can post any page

• Many pages aren’t sufficiently self-descriptive
– Pages may contain little text, mostly images or other content
– Might not contain text that matches their description, e.g. “search 

engine”
• Much benefit from manipulating results

– Alter pages so that relevant terms appear more frequently 
(spamming)                                                      

Solution: Hyperlink Analysis

• Need a way to rank query results by document quality
• Hyperlink assumptions:

– Link from page A to B is a recommendation of page B by author 
of page A

– If two pages are connected by a link, they might be on the same 
topic

– anchor text of a link describes its target
• Types of hyperlink ranking

– Query-independent, each page gets a quality or importance 
score based on the links to it

• PageRank
– Query-dependent, importance score assigned to pages only in 

the context of queries
• HITS



8

Page Rank

• Designed by Brin and Page at Stanford 
University

• Used to implement Google
• Main idea:

– a page has a high PageRank if the sum of the 
PageRanks of its in-links is high

– a high PageRank page has many in-links or few 
highly PageRanked in-links

• Retrieval:
– standard IR score (cosine product using content -

term weights, etc)
– combined with PageRank value

Algebraic Background 
Eigenvalues & Eigenvectors

• Eigenvectors (for a square m×m matrix 
S)

• How many eigenvalues are there at 
most?

eigenvalue(right) eigenvector

Example
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Algebraic Background 
Matrix vector multiplication
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On each eigenvector, S acts as a multiple of the identity
matrix: but as a different multiple on each.

Any vector (say x=    ) can be viewed as a combination of
the eigenvectors:               x = 2v1 + 4v2 + 6v3
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Algebraic Background 
Matrix vector multiplication

• Thus a matrix-vector multiplication such as Sx (S, x as in the 
previous slide) can be rewritten in terms of the 
eigenvalues/vectors:

• Even though x is an arbitrary vector, the action of S on x is 
determined by the eigenvalues/vectors.

• Suggestion: the effect of “small” eigenvalues is small. 

332211321

321

642642
)642(

vvvSvSvSvSx
vvvSSx

λλλ ++=++=
++=



10

Algebraic Background
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Consider a square nxn matrix A.
• Eigenvectors of A

X1, . . . ,Xn
are a special set of (column) vectors associated with A
• Each eigenvector is associated with a corresponding eigenvalue:

λ1 , . . . , λn
• Basic property:

i=1…n, AXi = λi Xi
• Here, we assume that A has n distinct eigenvalues
• Also assume that |λ1| > |λ2| ≥ ... ≥ |λn|
• Eigenvector X1 corresponds to the largest eigenvalue λ1: principal 
eigenvector
• Eigenvectors X1, X2, …, Xn are linearly independent and form a basis of Rn

. 
Thus any vector q0 can be presented as 

q0 =b1X1+b2X2+…+bnXn
Assuming b1 ≠ 0, vector qk=Ak q0 is equal to:

Algebraic Background
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Page rank (cont.)
• Random Surfer Model : user randomly navigates

– Initially the surfer is at a random page
– At each step the surfer proceeds to 

• a randomly chosen Web page with probability d (“damping factor”)
e.g. probability of random jump = 0.15

• to a randomly chosen page linked to the current page with probability 
1-d e.g. probability of following a random outlink = 0.85

• User cannot use the back button of the web browser
• PageRank PR of a page p = probability that the surfer is 

at page p on a given time

• where d set by system, page q points to page p, Nq the 
number of out-links of q, N the number of the web pages

• Recursive formula: start with any set of values and iterate 
until convergence

• Process modelled by Markov Chain

:

( )( ) (1 )
q q p q

d PR qPR p d
N N→

= + − ∑

Page rank (cont.)



12

An example of Page rank 
computation

P

A B

• PageRank of P is (1-d)∗ ( 1/4th the PageRank of A + 1/3rd the PageRank of B 
)+d/N
• In HITS, a webpage with a large number of out-going links will have influence 
on the final ranking.
• In PageRank, each out-going hyperlink from q is weighted by 1/Nq, thus every 
webpage has the same total out-going weights:

• Internet Democracy: each webpage has a total of one vote

Examples
d=0.15
PR1(A)= 0.15/2+0.85(PR0(B)/1) = 0,925 
PR1(B)= 0.15/2+0.85(PR0(A)/1) =  0,925
lim PRk(A)= 0.5
lim PRk(B)= 0.5

d=0.15
PR1(A)=0.15/3+0.85(PR0(B) /2) = 0.475 
PR1(B)=0.15/3+0.85(PR0(A)/1) = 0,9 
PR1(C)=0.15/3+0.85(PR0(B)/2) = 0.475 
lim PRk(A)= 0.1115
lim PRk(B)= 0.1448   
lim PRk(C)= 0.1115

d=0.15
PR1(A)=0.15/3+0.85(PR0(B) /2) = 0.4750 
PR1(B)=0.15/3+0.85(PR0(A) +PR0(C)) = 
1.75
PR1(C)=0.15/3+0.85(PR0(B)/2) = 0.4750
lim PRk (A)= 0.2568
lim PRk (B)= 0.4865 
lim PRk (C)= 0.2568

A B

A B C

A B C

PR0 = 1 PR0 = 1

PR0 = 1 PR0 = 1 PR0 = 1

PR0 = 1 PR0 = 1 PR0 = 1

Dangling link d=0
PR1 (A)=1/2  
PR1 (B)= 1 
PR1 (C)=1/2
lim PRk(A)= 0
lim PRk(B)= 0   
lim PRk(C)= 0

d=0
PR1(A)=0.5
PR1(B)=2
PR1(C)=0.5
lim PRk (A)= 0.5 or 1
lim PRk (B)= 2 or 1
lim PRk (C)= 0.5 or 1
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Problems with Basic PageRank (d=0)

• Web is not a strongly connected graph
– Rank sink – strongly connected component with no 

outward links

• Nodes not part of sink get rank of 0
– Rank leak – single page (node) with no outward links

• All nodes eventually converge to rank of 0

1

2

3

4
5
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2
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Algebraic interpretation
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Equivalently, we can use the following normalized 
page rank update:
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Using matrix notation:

and

vi=1/N for this particular update
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Properties of Matrix P
• λ1=1 is the largest eigenvalue
• |λ1| > |λ2| ≥ ... ≥ |λn|
• |λ2|≤ (1-d)
• PRk converges to the primary eigenvector of the 

matrix P
• The rate of convergence: O(|λ2/λ1|), i.e. O(1-d)
• Rank values typically converge in 50-100 

iterations
• Rank orders converge even faster
• Faster convergence if using random jumps 

more: 
– higher d value: the true hyperlink structure 

of the web is used less to determine web 
importance

• Page Rank estimation: 
– the estimation of the primary eigenvector of 

a huge matrix NxN where N=4,300,000,000 
– It has been reported that Google computes 

PageRank once every few weeks for all 
documents in its Web collection

Problems with PageRank
• Pages related to a topic may not contain that 

topic’s keywords
– “Search engine” example again

• No balance between relevancy and popularity
– Very popular pages (such as search engines and web 

portals) may be returned artificially high due to their 
popularity (even if not very related to the query)

• Despite these problems, seems to work fairly 
well in practice
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Query-Dependent Ranking

• Importance score assigned only in response to user 
query
– Can account for both quality and relevance

• Construct query-specific neighborhood graph
– Start with set of 

documents matching 
query (maybe top 200)

– Add to this its 
neighborhood: set of 
documents that link 
to it and that it links to

– Can now perform 
query-dependent 
ranking on neighborhood

Hyperlink-Induced Topic Search 
(HITS)

– Creates a small graph of focused hypertext 
documents e.g. a particular topic of interest

• Authoritative pages are  pages that have received 
many citations and are considered the best source 
of information. Citations from important pages 
should be weighted higher than citations from less-
important pages

• Hub pages are pages that contain links to 
authoritative pages and is used as a measure of 
importance. A good hub page should allow us to 
reach many authoritative pages
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• For each node A in a neighborhood N
– Hub(A) = hub score
– Auth(A) = authority score

• Initialize Hub(A) to 1 (for all nodes)
• For all nodes A in N, compute

• Normalize after each iteration and repeat until Hub and Authority vectors 
converge

HITS Algorithm
2

3

4

1 1

5

6

7
a(1) = h(2) + h(3) + h(4) h(1) = a(5) + a(6) + a(7)

2 2
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HITS Example

• {1, 2, 3, 4} - nodes relevant to        
the topic

• Expand the root set R to include 
all the children and a fixed 
number of parents of nodes in R

A new set S (base subgraph) 

• Start with a root set R {1, 2, 3, 4}

Find a base subgraph:
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HITS Example Results

Authority
Hubness

1  2   3   4   5   6   7  8   9  10 11 12 13 14 15

Authority and hubness weights

Algebraic Interpretation

Neighborhood graph N 

,

1
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:

( ) ( )
q N p q

Hub p Auth q
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= ∑
:

( ) ( )
q N q p

Auth p Hub q
∈ →

= ∑

T= ⋅Auth A z = ⋅Hub A Auth
where Auth and Hub are the column of authority and hub values respectively 
and z a column vector of 1s.
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Algebraic Interpretation

• No normalization at each step

( ) 1kk T T−
≈ ⋅Auth A A A z ( ) 1kk T −

≈ ⋅ ⋅Hub A A z

,  symmetric matricesT TA A AA
• Linear Algebra:

• If M is a symmetric matrix, and v is a vector not orthogonal to the principal 
eigenvector X₁ of M, then the unit vector in the direction of Mkv converges to X₁
as k increases without bounds.

• Hub and authority weights are truly an intrinsic feature of the linked pages, 
not an artifact of the choice of initial weights or the tuning of arbitrary
parameters
• Pages with large weights represent a very dense pattern of linkage from 
pages of large hub weight to pages of large authority weight
• For sample query “search engines” the top authorities returned by HITS 
were Yahoo Excite Magellan Lycos and AltaVista even though none of 
these pages contained the phrase search engines

HITS Example

• hgfh

1 1 1 1 0 1 3 1 2 2 2 1
0 0 1 , 1 0 1 , 1 1 0 , 2 2 1
1 1 0 1 1 0 2 0 2 1 1 2
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2 10 48 228
2 10 48 228
2 8 36 168

1 6 28 132 624
1 2 8 36 168
1 4 20 96 456

0.5774 0.61
0.5774
0.5774
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AUTH
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AUTH
AUTH

55 0.6247 0.6271
0.6155 0.6247 0.6271
0.4924 0.4685 0.4621

0.5774 0.8018 0.7926 0.7898
0.5774 0.2673 0.2265 0.2154
0.5774 0.5345 0.5661 0.5744

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥→ →⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢= → → →⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

HUB
HUB

0.7890
0.2124
0.5766

⎤ ⎡ ⎤
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The normalized authority 
and hub values clearly 
converge
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Problems with HITS
• Only a small set of pages (in a neighborhood) are considered

– Rankings are more vulnerable to manipulation (spamming)
• Hub pages can link to authorities on several different topics

– Hub score increases, even though many of the links are 
irrelevant

• Topic drift
– Majority of pages in neighborhood might focus on a topic different 

from the query topic
• Top-ranked pages would then be on this different topic as 

well
• topic drift (e.g. from „Jaguar car“ to „car“ in general)
• Potential Solution: Weighting edges based on how well 

document content matches query
• Requires computation for each query
• Unlike PageRank, no commercial implementations; real-world 

performance still uncertain

Ranking in Search Engines
• Lots of variation here

– Pretty messy in many cases
– Details usually proprietary and fluctuating

• Combining subsets of:
– Term frequencies
– Term proximities
– Term position (title, top of page, etc)
– Term characteristics (boldface, capitalized, etc)
– Link analysis information
– Category information
– Popularity information

• Most use a variant of vector space ranking to combine these
• Here’s how it might work:

– Make a vector of weights for each feature
– Multiply this by the counts for each feature
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Crawling
• Begin with an initial set of ‘start’ pages 
• Follow all links on these pages 

recursively to find additional pages.
• Index/Process all novel found pages in 

an inverted index as they are 
encountered.

• May allow users to directly submit pages 
to be indexed (and crawled from).

Crawling - Search Strategies
Breadth-first Search Depth-first Search
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Queueing Strategy
How new links are added to the queue determines search strategy.
FIFO (append to end of Q) gives breadth-first search.
LIFO (add to front of Q) gives depth-first search.
Heuristically ordering the Q gives a “focused crawler” that directs its search 
towards “interesting” pages.
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Search Strategy Trade-Off’s
• Breadth-first explores uniformly outward from the root page but requires

memory of all nodes on the previous level (exponential in depth).  Standard 
spidering method.

• Depth-first requires memory linear in depth but gets “lost” pursuing a single 
thread.

• Both strategies can be easily implemented using a queue of links (URL’s):
Initialize queue (Q) with initial set of known URL’s.
Until Q empty or page or time limit exhausted:
Pop URL, L, from front of Q.
If L is not an HTML or text page (.gif, .jpeg, …)

continue loop.
If already visited L, continue loop.
Download page, P, for L.
If cannot download P (e.g. 404 error, robot excluded)

continue loop.
Index P (e.g. add to inverted index or store cached copy).
Parse P to obtain list of new links N.
Append N to the end of Q.

Crawling - Page duplication
• Web is a cyclic graph not a tree: crawler might visit the same page more than once
• Mirrors (servers, documents/manuals (e.g. Java API manual, Linux Documentation 

Project manual))
• Plagiarism
• many replicas may not be strictly identical to each other: different update frequency, 

mirror partial coverage, different format etc.)
• Minor modifications (email, last modified date, access counters, dynamic URLs)
• Expensive for Indexing (memory, processing)
• Expensive for crawling
• Return of the same documents to the user
• Avoiding Page Duplication:

– Must detect when revisiting a page that has already been spidered
– Must efficiently index visited pages to allow rapid recognition test.

• Tree indexing (e.g. trie)
• Hashtable

– Index page using URL as a key.
• Must canonicalize URL’s (e.g. delete ending “/”) 
• Not detect duplicated or mirrored pages.

– Index page using textual content as a key.
• Requires first downloading page.

– Compare directory structures of web sites
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Link Extraction
• Must find all links in a page and extract URLs.

– <a href=“http://www.thalis.cs.unipi.gr/IR/”>
• Must complete relative URL’s using current page URL:

– <a href=“proj3”>   to            
http://www.thalis.cs.unipi.gr/IR/proj3

• Equivalent variations of ending directory normalized by 
removing ending slash.
– http://www.thalis.cs.unipi.gr/IR/
– http://www.thalis.cs.unipi.gr/IR

• Internal page fragments (ref’s) removed:
– http://www.thalis.cs.unipi.gr/IR/welcome.html#notes
– http://www.thalis.cs.unipi.gr/IR/welcome.html

Anchor Text Indexing
• Extract anchor text (between <a> and </a>) of each link followed.
• Anchor text is usually descriptive of the document to which it points.
• Add anchor text to the content of the destination page to provide additional 

relevant keyword indices.
• Used by Google:

– <a href=“http://www.cs.unipi.gr”> Department of Informatics, University 
of Piraeus</a>

• Helps when descriptive text in destination page is embedded in image logos 
rather than in accessible text.

• Many times anchor text is not useful:
– “click here”

• Increases content more for popular pages with many in-coming links, 
increasing recall of these pages.

• May even give higher weights to tokens from anchor text.
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Robot Exclusion
• Web sites and pages can specify that robots should not crawl/index 

certain areas.
• Two components:

– Robots Exclusion Protocol: Site wide specification of excluded 
directories.

– Robots META Tag: Individual document tag to exclude indexing 
or following links.

• Site administrator puts a “robots.txt” file at the root of the 
host’s web directory.
– http://www.ebay.com/robots.txt
– http://www.cnn.com/robots.txt

• File is a list of excluded directories for a given robot 
(user-agent).
– Exclude all robots from the entire site:
User-agent: *
Disallow: /

Robots Exclusion (Cont.)
• Exclude specific directories:

User-agent: *
Disallow: /tmp/
Disallow: /cgi-bin/
Disallow: /users/paranoid/

• Exclude a specific robot:
User-agent: GoogleBot
Disallow: /

• Allow a specific robot:
User-agent: GoogleBot
Disallow: 

• Only use blank lines to separate different User-agent disallowed 
directories.

• One directory per “Disallow” line.
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Robots META Tag
• Include META tag in HEAD section of a specific HTML document.

– <meta name=“robots” content=“none”>
• Content value is a pair of values for two aspects:

– index | noindex:  Allow/disallow indexing of this page.
– follow | nofollow: Allow/disallow following links on this page.

• Special values:
– all = index,follow
– none = noindex,nofollow

• Examples:
<meta name=“robots” content=“noindex,follow”>

<meta name=“robots” content=“index,nofollow”>
<meta name=“robots” content=“none”>

Robot Exclusion  Issues

• META tag is newer and less well-adopted 
than “robots.txt”.

• Standards are conventions to be followed 
by “good robots.”

• Companies have been prosecuted for 
“disobeying” these conventions and 
“trespassing” on private cyberspace.
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Multi-Threaded Spidering

• Bottleneck is network delay in downloading 
individual pages.

• Best to have multiple threads running in parallel 
each requesting a page from a different host.

• Distribute URL’s to threads to guarantee 
equitable distribution of requests across different 
hosts to maximize through-put and avoid 
overloading any single server.

• Early Google spider had multiple co-ordinated
crawlers with about 300 threads each, together 
able to download over 100 pages per second. 

Directed/Focused Spidering
• Sort queue to explore more “interesting” pages first.
• Three styles of focus:

– Topic-Directed
• Assume desired topic description or sample pages of interest 

are given.
• Sort queue of links by the similarity (e.g. cosine metric) of 

their source pages and/or anchor text to this topic description.
– Link-Directed

• Monitor links and keep track of in-degree and out-degree of 
each page encountered.

• Sort queue to prefer popular pages with many in-coming links 
(authorities).

• Sort queue to prefer summary pages with many out-going 
links (hubs).

– Google’s PageRank algorithm
– Location Directed: 

• (content doesn’t matter, only the URL does
– e.g. .com more important than .biz



26

Keeping Spidered Pages 
Up to Date

• Web is very dynamic: many new pages, updated pages, 
deleted pages, etc.

• Periodically check spidered pages for updates and 
deletions:
– Just look at header info (e.g. META tags on last 

update) to determine if page has changed, only 
reload entire page if needed.

• Track how often each page is updated and preferentially 
return to pages which are historically more dynamic.

• Preferentially update pages that are accessed more 
often to optimize freshness of more popular pages. 

Web Spam

• What are the types of Web spam?
– Add extra terms to get a higher ranking

• Repeat “cars” thousands of times
– Add irrelevant terms to get more hits

• Put a dictionary in the comments field
• Put extra terms in the same color as the background of 

the web page
– Add irrelevant terms to get different types of hits
– Add irrelevant links to boost your link analysis ranking

• There is a constant “arms race” between web search companies 
and spammers
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Web Spam

• Most search engines have rules against 
– invisible text
– meta tag abuse 
– heavy repetition
– "domain spam”

• overtly submission of "mirror“ sites in an attempt to 
dominate the listings for particular terms

Web Spam

• Excite screens out spamming before adding a page to its 
web page index. 
– if it finds a string of words such as:
– money money money money money money money
– it will replace the excess repetition, so that essentially, the string 

becomes:
– money xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx

• The more Excite detects unusual repetition, the more 
heavily it will penalize a page.

• Excite does not penalize for the use of hidden text, but
penalties will apply if hidden text is used to disguise 
spam content.

• Excite penalises "domain spam."
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Google Architecture Overview

• URL server
– Sends URLs to be fetched 

to crawlers
• Crawler

– Downloads web pages
– Done by several distributed 

crawlers
• Store Server

– Compresses and stores 
web pages

• Repository
– Each web page associated 

with docID

Google Architecture Overview
• Indexer

– Reads repository, 
uncompresses docs, parses 
them

– Each doc converted to set of 
word occurences, “Hits”

• Record word, position, font, 
capitalization

• Distributes hits into set of 
“Barrels” creating partially 
sorted forward index

– Parses all links in web pages 
and stores them in “Anchor 
File”

• Contains enough info to 
determine where each link 
points from and to and text of 
link
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Google Architecture Overview

• URL Resolver
– Reads anchor files
– Converts relative 

URLs to absolute 
URLs and in turn into 
docIDs

– Puts anchor text into 
forward index, 
associated with  docID
that the anchor points 
to

– Generates database of 
link (pairs of docIDs, 
used to compute PR)

Google Architecture Overview
• Sorter

– Takes barrels sorted by docID
– Resorts by wordID to generate 

inverted index
– Also produces list of wordIDs

and offsets into inverted index
• DumpLexicon

– Takes above list along with 
lexicon produced by indexer 

– Generates new lexicon for use 
by “Searcher”

• Searcher
– Uses above lexicon with 

inverted index and PR to 
answer queries
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Major Data Structures

1. Big Files
Virtual files spanning multiple file systems
Addressable by 64 bit integers
File system allocation handled automatically
Handles allocation and deallocation of file 
descriptors
Support rudimentary compression options

Major Data Structures

2. Repository
• Contains full HTML of 

every web page
• Each page compressed 

with zlib
• Docs stored one after 

another
• Prefix : docID, length, 

URL
• Requires no other data 

structure to be 
accessed
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Major Data Structures

4. Lexicon
• Fits in main memory
• Contains excess of 14 

million words
• Implemented as:

– List of words 
(concatenated, but 
separated by nulls)

– Hash table of pointers

Major Data Structures

3. Document Index
• Keeps information about each doc
• It’s a fixed width ISAM (Index Sequential 

Access Mode) index, ordered by docID
• Each entry includes current doc status, pointer 

to repository, doc checksum
• If doc crawled, contains pointer to variable 

width file, docinfo (contains its URL, title)
• Else, just contains URL
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Major Data Structures
5. Hit Lists
• Occurrences of words in doc with 

position, font, capitalization info
• Accounts for most space in forward, 

inverted indices
• Uses hand optimized compact 

encoding
• Types:

– Fancy Hits
• Hits occurring in URL, title, anchor 

text, meta tag
• Capitalization Bit + Font Size 7 + 4 

Bits to encode type, Position (8 Bits)
• Anchor Hits: Position bits split as 4 

bits anchor position + 4 Bits docID
hash of  anchor

– Plain Hits
• Capitalization bit + Font size (Relative, 

3 Bits) + Word position (12 Bits)

Major Data Structures
6. Forward Index
• Partially sorted
• Stored in a no. of barrels (~64)
• Each barrel holds range of wordIDs
• Barrel stores docID of doc 

containing word + list of wordIDs + 
Hit lists 

• Instead of actual wordID, relative 
difference from minimum Barrel 
wordID stored

• Leaves 8 bits for Hit list length



33

Major Data Structures
7. Inverted Index
• Consists of same barrels as 

forward index that are 
already processed by sorter

• For valid wordID, lexicon 
contains pointer to Barrel 
that wordID falls into

• Points to doclist of docIDs + 
hit lists

• Doclist represents all 
occurences of that word in 
all docs

Major Applications

• Crawling the Web
– Uses fast distributed crawling system
– Each crawler maintains its own DNS cache

• Indexing the Web
– Parsing
– Indexing Documents into Barrels
– Sorting

• Searching
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Google Query Evaluation

1. Parse the query. 
2. Convert words into wordIDs. 
3. Seek to the start of the doclist in the short barrel for 

every word. 
4. Scan through the doclists until there is a document that 

matches all the search terms. 
5. Compute the rank of that document for the query. 
6. If we are in the short barrels and at the end of any 

doclist, seek to the start of the doclist in the full barrel 
for every word and go to step 4. 

7. If we are not at the end of any doclist go to step 4. 
Sort the documents that have matched by rank and 
return the top k.

Single Word Query Ranking

• Hitlist is retrieved for single word
• Each hit can be one of several types: title, anchor, URL, 

large font, small font, etc.
• Each hit type is assigned its own weight
• Type-weights make up vector of weights
• # of hits of each type is counted to form count vector
• Dot product of two vectors is used to compute IR score
• IR score is combined with PageRank to compute final 

rank
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Multi-word Query Ranking

• Similar to single-word ranking except now must 
analyze proximity

• Hits occurring closer together are weighted 
higher

• Each proximity relation is classified into 1 of 10 
values ranging from a phrase match to “not even 
close”

• Counts are computed for every type of hit and 
proximity

Summary of Key Optimization 
Techniques

– Each crawler maintains its own DNS lookup cache
– Parallelization of indexing phase
– In-memory lexicon
– Compression of repository
– Compact encoding of hitlists accounting for major space savings
– Indexer is optimized so it is just faster than the crawler so that 

crawling is the bottleneck
– Document index is updated in bulk
– Critical data structures placed on local disk
– Overall architecture designed to avoid disk seeks wherever 

possible


