
1

Searching the Web

Challenges of Web Searching

• The Web is huge
– Google indexes over 4 billion pages
– Some estimate search engines only reach 16%

of web
• The Web is dynamic

– About 23% of pages change daily
– In .com domain, pages average 10 day half-life

(half the pages gone in 10 days)
• The Web is open

– Anyone can post pages on any topic at any
time

2

Modeling the Web

• Heaps’ and Zipf’s laws are valid in the Web too, but:
– Vocabulary grows faster (β is larger);
– Words distribution is more biased (θ value is larger);

• Distribution of document sizes:
– Probability of finding a document of size x bytes:

• - average (9.357) - standard deviation (1.318)
– Pareto distribution:

• α and k are parameters of the distribution: α=1.1 and k=9.3 Kb for the Web

() () 22 2/lnexp
2

1 σµ
πσ

−−= x
x

xp

µ σ

() α

αα
+= 1x
kxp

Modeling the Web (Cont.)

• In-degree of page: the number of pages pointing to this page
• Out-degree of page: the number of hyperlinks contained in this page
• The fraction of web pages with in-degree/out-degree i is

proportional to 1/ix for some x > 1:
– x=2.1 for in-degree distribution
– x=2.72 for out-degree distribution

• The average out-degree is about 7.2.

3

Modeling the Web (Cont.)
• Strongly-connected component: set of pages

such that for all pairs of pages (u,v) in the set,
there exists a directed path from u to v:

– a surfer can follow hyperlinks to surf from u to v
• The web as a bowtie:

– SCC is a giant strongly connected component.
– IN consists of pages with paths to SCC, but no

path from SCC:
• new pages that link to interesting

destinations on the web, but which have
not yet been discovered by the core of the
web and are therefore not reachable from
the SCC.

– OUT consists of pages with paths from SCC,
but no path to SCC:

• pages of corporate internets which are
well-known, but whose links point only
internally

– TENDRILS consists of pages that cannot surf to
SCC, and which cannot be reached by surfing
from SCC:

• the web has not yet discovered these
pages, and these pages do not contain
interesting links back to better-known
regions of the web

Search Engine Architecture

Web Crawlers
Web Page
Repository

Indexer

Document
(Text)
Index

Structure
(Link)
Index

URL Chooser

Client

Query
Engine

Page
Ranking

Query

Results

4

Search Engine Components
• Crawler – downloads pages from the web

– URL Chooser – decides which page to download next
• Web Page Repository – stores full HTML of downloaded

pages
• Indexer – extracts words and links from pages, associating

them with URLs
• Document (Text) Index – stores mapping from keywords to

URLs
• Link (Structure) Index – stores a representation of the

directed graph formed from links between pages
• Query Engine – receives keyword search terms from user to

find matches in Document Index
• Page Ranking – uses hyperlink analysis to rank the pages

that match a particular query

Browsing
• Web coverage provided by

directories is very low;
(less than 1% of all pages)

• Yahoo! – the largest directory:
– ~1 mil.pages classified;
– Pages are submitted,

reviewed and added;
– Advantage:

• if found, the answer will
be useful in most cases;

– Disadvantage:
• classification is not

specialized enough;
• not all Web pages are

classified;

5

Metasearch

• Web server that sends query
to
– Several search engines
– Web directories
– Databases

• Example: Metacrawler
• Collect results
• Unify them (Data fusion)
• Aim: better coverage
• Issues

– Translation of query
– Uniform result (fusion

rankings, e.g. pages
retrieved by several
engines)

Search engines

Portal sites

Popularity of Search engines
and Portal Sites (April 2004)

• In addition to searching,
portal sites usually offer
web directories, web mail,
news etc.

6

Information Retrieval Applied to the
Web

• Web pages contain additional information besides just
plain text

• Use HTML formatting tags to infer importance of terms in
page, and weight accordingly
– Headings and bold terms are more important than paragraph text
– Include link text in page that is linked to

• Links often constitute better description of the page than the page
itself does

• Construct inverted index
– Set of inverted lists, one for each word
– Maps word to a sorted list of locations (page IDs and position of

word in page)

Classic Information Retrieval
Assumptions

• Set of documents well-managed
– Size relatively fixed (and not that large)
– Most documents are high quality, not much

junk
– Documents are relatively self-describing

7

Problems using IR for Web Search

• The Abundance Problem
– The web is too big, number of pages that can reasonably be

returned as relevant is far too much for a human to process
– The web contains a lot of junk, anyone can post any page

• Many pages aren’t sufficiently self-descriptive
– Pages may contain little text, mostly images or other content
– Might not contain text that matches their description, e.g. “search

engine”
• Much benefit from manipulating results

– Alter pages so that relevant terms appear more frequently
(spamming)

Solution: Hyperlink Analysis

• Need a way to rank query results by document quality
• Hyperlink assumptions:

– Link from page A to B is a recommendation of page B by author
of page A

– If two pages are connected by a link, they might be on the same
topic

– anchor text of a link describes its target
• Types of hyperlink ranking

– Query-independent, each page gets a quality or importance
score based on the links to it

• PageRank
– Query-dependent, importance score assigned to pages only in

the context of queries
• HITS

8

Page Rank

• Designed by Brin and Page at Stanford
University

• Used to implement Google
• Main idea:

– a page has a high PageRank if the sum of the
PageRanks of its in-links is high

– a high PageRank page has many in-links or few
highly PageRanked in-links

• Retrieval:
– standard IR score (cosine product using content -

term weights, etc)
– combined with PageRank value

Algebraic Background
Eigenvalues & Eigenvectors

• Eigenvectors (for a square m×m matrix
S)

• How many eigenvalues are there at
most?

eigenvalue(right) eigenvector

Example

9

Algebraic Background
Matrix vector multiplication

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
020
003

S has eigenvalues 3, 2, 0 with
corresponding eigenvectors

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0
0
1

1v
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0
1
0

2v
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

1
0
0

3v

On each eigenvector, S acts as a multiple of the identity
matrix: but as a different multiple on each.

Any vector (say x=) can be viewed as a combination of
the eigenvectors: x = 2v1 + 4v2 + 6v3

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

6
4
2

Algebraic Background
Matrix vector multiplication

• Thus a matrix-vector multiplication such as Sx (S, x as in the
previous slide) can be rewritten in terms of the
eigenvalues/vectors:

• Even though x is an arbitrary vector, the action of S on x is
determined by the eigenvalues/vectors.

• Suggestion: the effect of “small” eigenvalues is small.

332211321

321

642642
)642(

vvvSvSvSvSx
vvvSSx

λλλ ++=++=
++=

10

Algebraic Background

1 1 1
2 1 1

kn
j jk

k j
j

b
q b X X

b
λ

λ
λ=

⎛ ⎞⎛ ⎞
⎜ ⎟= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

Consider a square nxn matrix A.
• Eigenvectors of A

X1, . . . ,Xn
are a special set of (column) vectors associated with A
• Each eigenvector is associated with a corresponding eigenvalue:

λ1 , . . . , λn
• Basic property:

i=1…n, AXi = λi Xi
• Here, we assume that A has n distinct eigenvalues
• Also assume that |λ1| > |λ2| ≥ ... ≥ |λn|
• Eigenvector X1 corresponds to the largest eigenvalue λ1: principal
eigenvector
• Eigenvectors X1, X2, …, Xn are linearly independent and form a basis of Rn

.
Thus any vector q0 can be presented as

q0 =b1X1+b2X2+…+bnXn
Assuming b1 ≠ 0, vector qk=Ak q0 is equal to:

Algebraic Background

1 1 1 1
1

2

1

So, converges to the following limit

lim lim

 the rate of convergence

k

k k
k kk k

q
qq b X b Xλ
λ

λ
λ

→∞ →∞
= ⇒ =

⎛ ⎞
Ο⎜ ⎟
⎝ ⎠

11

Page rank (cont.)
• Random Surfer Model : user randomly navigates

– Initially the surfer is at a random page
– At each step the surfer proceeds to

• a randomly chosen Web page with probability d (“damping factor”)
e.g. probability of random jump = 0.15

• to a randomly chosen page linked to the current page with probability
1-d e.g. probability of following a random outlink = 0.85

• User cannot use the back button of the web browser
• PageRank PR of a page p = probability that the surfer is

at page p on a given time

• where d set by system, page q points to page p, Nq the
number of out-links of q, N the number of the web pages

• Recursive formula: start with any set of values and iterate
until convergence

• Process modelled by Markov Chain

:

()() (1)
q q p q

d PR qPR p d
N N→

= + − ∑

Page rank (cont.)

12

An example of Page rank
computation

P

A B

• PageRank of P is (1-d)∗ (1/4th the PageRank of A + 1/3rd the PageRank of B
)+d/N
• In HITS, a webpage with a large number of out-going links will have influence
on the final ranking.
• In PageRank, each out-going hyperlink from q is weighted by 1/Nq, thus every
webpage has the same total out-going weights:

• Internet Democracy: each webpage has a total of one vote

Examples
d=0.15
PR1(A)= 0.15/2+0.85(PR0(B)/1) = 0,925
PR1(B)= 0.15/2+0.85(PR0(A)/1) = 0,925
lim PRk(A)= 0.5
lim PRk(B)= 0.5

d=0.15
PR1(A)=0.15/3+0.85(PR0(B) /2) = 0.475
PR1(B)=0.15/3+0.85(PR0(A)/1) = 0,9
PR1(C)=0.15/3+0.85(PR0(B)/2) = 0.475
lim PRk(A)= 0.1115
lim PRk(B)= 0.1448
lim PRk(C)= 0.1115

d=0.15
PR1(A)=0.15/3+0.85(PR0(B) /2) = 0.4750
PR1(B)=0.15/3+0.85(PR0(A) +PR0(C)) =
1.75
PR1(C)=0.15/3+0.85(PR0(B)/2) = 0.4750
lim PRk (A)= 0.2568
lim PRk (B)= 0.4865
lim PRk (C)= 0.2568

A B

A B C

A B C

PR0 = 1 PR0 = 1

PR0 = 1 PR0 = 1 PR0 = 1

PR0 = 1 PR0 = 1 PR0 = 1

Dangling link d=0
PR1 (A)=1/2
PR1 (B)= 1
PR1 (C)=1/2
lim PRk(A)= 0
lim PRk(B)= 0
lim PRk(C)= 0

d=0
PR1(A)=0.5
PR1(B)=2
PR1(C)=0.5
lim PRk (A)= 0.5 or 1
lim PRk (B)= 2 or 1
lim PRk (C)= 0.5 or 1

13

Problems with Basic PageRank (d=0)

• Web is not a strongly connected graph
– Rank sink – strongly connected component with no

outward links

• Nodes not part of sink get rank of 0
– Rank leak – single page (node) with no outward links

• All nodes eventually converge to rank of 0

1

2

3

4
5

1

2

4

3

Algebraic interpretation

22

1 1 1

2
,

1 1

1
1

1
, , 1, , 1, ,

0
1

i

k
k

k k n nk k k
ui u v

i i

kk NNN

PR PR v
if u vPR vPR NPR v A
otherwise

vPRPR

= =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎧⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ →⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = = = =⎢ ⎥ ⎨⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎩⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∑PR PR v e

()1

1

1 and where (1)
Tk kk k T

N k
i

i

PR P PR PR PR P d A d ev
PR

−

=

= ⋅ = ⋅ = − + ⋅

∑

A=

Equivalently, we can use the following normalized
page rank update:

1

:

1

(1) and after normalization
k

k q
p

q q p q

k
pk

p N k
i

i

PRdPR d
N N

PRPR
PR

−

→

=

= + −

=

∑

∑
Using matrix notation:

and

vi=1/N for this particular update

14

Properties of Matrix P
• λ1=1 is the largest eigenvalue
• |λ1| > |λ2| ≥ ... ≥ |λn|
• |λ2|≤ (1-d)
• PRk converges to the primary eigenvector of the

matrix P
• The rate of convergence: O(|λ2/λ1|), i.e. O(1-d)
• Rank values typically converge in 50-100

iterations
• Rank orders converge even faster
• Faster convergence if using random jumps

more:
– higher d value: the true hyperlink structure

of the web is used less to determine web
importance

• Page Rank estimation:
– the estimation of the primary eigenvector of

a huge matrix NxN where N=4,300,000,000
– It has been reported that Google computes

PageRank once every few weeks for all
documents in its Web collection

Problems with PageRank
• Pages related to a topic may not contain that

topic’s keywords
– “Search engine” example again

• No balance between relevancy and popularity
– Very popular pages (such as search engines and web

portals) may be returned artificially high due to their
popularity (even if not very related to the query)

• Despite these problems, seems to work fairly
well in practice

15

Query-Dependent Ranking

• Importance score assigned only in response to user
query
– Can account for both quality and relevance

• Construct query-specific neighborhood graph
– Start with set of

documents matching
query (maybe top 200)

– Add to this its
neighborhood: set of
documents that link
to it and that it links to

– Can now perform
query-dependent
ranking on neighborhood

Hyperlink-Induced Topic Search
(HITS)

– Creates a small graph of focused hypertext
documents e.g. a particular topic of interest

• Authoritative pages are pages that have received
many citations and are considered the best source
of information. Citations from important pages
should be weighted higher than citations from less-
important pages

• Hub pages are pages that contain links to
authoritative pages and is used as a measure of
importance. A good hub page should allow us to
reach many authoritative pages

16

• For each node A in a neighborhood N
– Hub(A) = hub score
– Auth(A) = authority score

• Initialize Hub(A) to 1 (for all nodes)
• For all nodes A in N, compute

• Normalize after each iteration and repeat until Hub and Authority vectors
converge

HITS Algorithm
2

3

4

1 1

5

6

7
a(1) = h(2) + h(3) + h(4) h(1) = a(5) + a(6) + a(7)

2 2

() ()() , ()
() ()

q N q N

Auth p Hub pAuth p Hub p
Auth q Hub q

∈ ∈

= =
∑ ∑

:
() ()

q N p q
Hub p Auth q

∈ →

= ∑
:

() ()
q N q p

Auth p Hub q
∈ →

= ∑

HITS Example

• {1, 2, 3, 4} - nodes relevant to
the topic

• Expand the root set R to include
all the children and a fixed
number of parents of nodes in R

A new set S (base subgraph)

• Start with a root set R {1, 2, 3, 4}

Find a base subgraph:

17

HITS Example Results

Authority
Hubness

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Authority and hubness weights

Algebraic Interpretation

Neighborhood graph N

,

1
0u v

if u v
A

otherwise
→⎧

= ⎨
⎩

A=

:

() ()
q N p q

Hub p Auth q
∈ →

= ∑
:

() ()
q N q p

Auth p Hub q
∈ →

= ∑

T= ⋅Auth A z = ⋅Hub A Auth
where Auth and Hub are the column of authority and hub values respectively
and z a column vector of 1s.

18

Algebraic Interpretation

• No normalization at each step

() 1kk T T−
≈ ⋅Auth A A A z () 1kk T −

≈ ⋅ ⋅Hub A A z

, symmetric matricesT TA A AA
• Linear Algebra:

• If M is a symmetric matrix, and v is a vector not orthogonal to the principal
eigenvector X₁ of M, then the unit vector in the direction of Mkv converges to X₁
as k increases without bounds.

• Hub and authority weights are truly an intrinsic feature of the linked pages,
not an artifact of the choice of initial weights or the tuning of arbitrary
parameters
• Pages with large weights represent a very dense pattern of linkage from
pages of large hub weight to pages of large authority weight
• For sample query “search engines” the top authorities returned by HITS
were Yahoo Excite Magellan Lycos and AltaVista even though none of
these pages contained the phrase search engines

HITS Example

• hgfh

1 1 1 1 0 1 3 1 2 2 2 1
0 0 1 , 1 0 1 , 1 1 0 , 2 2 1
1 1 0 1 1 0 2 0 2 1 1 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

T T TA A AA A A

2 10 48 228
2 10 48 228
2 8 36 168

1 6 28 132 624
1 2 8 36 168
1 4 20 96 456

0.5774 0.61
0.5774
0.5774

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= → → →⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= → → → →⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥= →⎢ ⎥
⎢ ⎥⎣ ⎦

AUTH

HUB

AUTH
AUTH

55 0.6247 0.6271
0.6155 0.6247 0.6271
0.4924 0.4685 0.4621

0.5774 0.8018 0.7926 0.7898
0.5774 0.2673 0.2265 0.2154
0.5774 0.5345 0.5661 0.5744

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥→ →⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢= → → →⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

HUB
HUB

0.7890
0.2124
0.5766

⎤ ⎡ ⎤
⎥ ⎢ ⎥→⎥ ⎢ ⎥
⎥ ⎢ ⎥⎦ ⎣ ⎦

The normalized authority
and hub values clearly
converge

19

Problems with HITS
• Only a small set of pages (in a neighborhood) are considered

– Rankings are more vulnerable to manipulation (spamming)
• Hub pages can link to authorities on several different topics

– Hub score increases, even though many of the links are
irrelevant

• Topic drift
– Majority of pages in neighborhood might focus on a topic different

from the query topic
• Top-ranked pages would then be on this different topic as

well
• topic drift (e.g. from „Jaguar car“ to „car“ in general)
• Potential Solution: Weighting edges based on how well

document content matches query
• Requires computation for each query
• Unlike PageRank, no commercial implementations; real-world

performance still uncertain

Ranking in Search Engines
• Lots of variation here

– Pretty messy in many cases
– Details usually proprietary and fluctuating

• Combining subsets of:
– Term frequencies
– Term proximities
– Term position (title, top of page, etc)
– Term characteristics (boldface, capitalized, etc)
– Link analysis information
– Category information
– Popularity information

• Most use a variant of vector space ranking to combine these
• Here’s how it might work:

– Make a vector of weights for each feature
– Multiply this by the counts for each feature

20

Crawling
• Begin with an initial set of ‘start’ pages
• Follow all links on these pages

recursively to find additional pages.
• Index/Process all novel found pages in

an inverted index as they are
encountered.

• May allow users to directly submit pages
to be indexed (and crawled from).

Crawling - Search Strategies
Breadth-first Search Depth-first Search

3

8

19

9

20

10

21

11

22

4

12 13

5

14 15

6

16 17

7

18

2

1

14

15

16

17

18

19

20

21

22

3

4 5

6

7 8

9

10 11

12

13

2

1

Queueing Strategy
How new links are added to the queue determines search strategy.
FIFO (append to end of Q) gives breadth-first search.
LIFO (add to front of Q) gives depth-first search.
Heuristically ordering the Q gives a “focused crawler” that directs its search
towards “interesting” pages.

21

Search Strategy Trade-Off’s
• Breadth-first explores uniformly outward from the root page but requires

memory of all nodes on the previous level (exponential in depth). Standard
spidering method.

• Depth-first requires memory linear in depth but gets “lost” pursuing a single
thread.

• Both strategies can be easily implemented using a queue of links (URL’s):
Initialize queue (Q) with initial set of known URL’s.
Until Q empty or page or time limit exhausted:
Pop URL, L, from front of Q.
If L is not an HTML or text page (.gif, .jpeg, …)

continue loop.
If already visited L, continue loop.
Download page, P, for L.
If cannot download P (e.g. 404 error, robot excluded)

continue loop.
Index P (e.g. add to inverted index or store cached copy).
Parse P to obtain list of new links N.
Append N to the end of Q.

Crawling - Page duplication
• Web is a cyclic graph not a tree: crawler might visit the same page more than once
• Mirrors (servers, documents/manuals (e.g. Java API manual, Linux Documentation

Project manual))
• Plagiarism
• many replicas may not be strictly identical to each other: different update frequency,

mirror partial coverage, different format etc.)
• Minor modifications (email, last modified date, access counters, dynamic URLs)
• Expensive for Indexing (memory, processing)
• Expensive for crawling
• Return of the same documents to the user
• Avoiding Page Duplication:

– Must detect when revisiting a page that has already been spidered
– Must efficiently index visited pages to allow rapid recognition test.

• Tree indexing (e.g. trie)
• Hashtable

– Index page using URL as a key.
• Must canonicalize URL’s (e.g. delete ending “/”)
• Not detect duplicated or mirrored pages.

– Index page using textual content as a key.
• Requires first downloading page.

– Compare directory structures of web sites

22

Link Extraction
• Must find all links in a page and extract URLs.

–
• Must complete relative URL’s using current page URL:

– to
http://www.thalis.cs.unipi.gr/IR/proj3

• Equivalent variations of ending directory normalized by
removing ending slash.
– http://www.thalis.cs.unipi.gr/IR/
– http://www.thalis.cs.unipi.gr/IR

• Internal page fragments (ref’s) removed:
– http://www.thalis.cs.unipi.gr/IR/welcome.html#notes
– http://www.thalis.cs.unipi.gr/IR/welcome.html

Anchor Text Indexing
• Extract anchor text (between <a> and) of each link followed.
• Anchor text is usually descriptive of the document to which it points.
• Add anchor text to the content of the destination page to provide additional

relevant keyword indices.
• Used by Google:

– Department of Informatics, University
of Piraeus

• Helps when descriptive text in destination page is embedded in image logos
rather than in accessible text.

• Many times anchor text is not useful:
– “click here”

• Increases content more for popular pages with many in-coming links,
increasing recall of these pages.

• May even give higher weights to tokens from anchor text.

23

Robot Exclusion
• Web sites and pages can specify that robots should not crawl/index

certain areas.
• Two components:

– Robots Exclusion Protocol: Site wide specification of excluded
directories.

– Robots META Tag: Individual document tag to exclude indexing
or following links.

• Site administrator puts a “robots.txt” file at the root of the
host’s web directory.
– http://www.ebay.com/robots.txt
– http://www.cnn.com/robots.txt

• File is a list of excluded directories for a given robot
(user-agent).
– Exclude all robots from the entire site:
User-agent: *
Disallow: /

Robots Exclusion (Cont.)
• Exclude specific directories:

User-agent: *
Disallow: /tmp/
Disallow: /cgi-bin/
Disallow: /users/paranoid/

• Exclude a specific robot:
User-agent: GoogleBot
Disallow: /

• Allow a specific robot:
User-agent: GoogleBot
Disallow:

• Only use blank lines to separate different User-agent disallowed
directories.

• One directory per “Disallow” line.

24

Robots META Tag
• Include META tag in HEAD section of a specific HTML document.

– <meta name=“robots” content=“none”>
• Content value is a pair of values for two aspects:

– index | noindex: Allow/disallow indexing of this page.
– follow | nofollow: Allow/disallow following links on this page.

• Special values:
– all = index,follow
– none = noindex,nofollow

• Examples:
<meta name=“robots” content=“noindex,follow”>

<meta name=“robots” content=“index,nofollow”>
<meta name=“robots” content=“none”>

Robot Exclusion Issues

• META tag is newer and less well-adopted
than “robots.txt”.

• Standards are conventions to be followed
by “good robots.”

• Companies have been prosecuted for
“disobeying” these conventions and
“trespassing” on private cyberspace.

25

Multi-Threaded Spidering

• Bottleneck is network delay in downloading
individual pages.

• Best to have multiple threads running in parallel
each requesting a page from a different host.

• Distribute URL’s to threads to guarantee
equitable distribution of requests across different
hosts to maximize through-put and avoid
overloading any single server.

• Early Google spider had multiple co-ordinated
crawlers with about 300 threads each, together
able to download over 100 pages per second.

Directed/Focused Spidering
• Sort queue to explore more “interesting” pages first.
• Three styles of focus:

– Topic-Directed
• Assume desired topic description or sample pages of interest

are given.
• Sort queue of links by the similarity (e.g. cosine metric) of

their source pages and/or anchor text to this topic description.
– Link-Directed

• Monitor links and keep track of in-degree and out-degree of
each page encountered.

• Sort queue to prefer popular pages with many in-coming links
(authorities).

• Sort queue to prefer summary pages with many out-going
links (hubs).

– Google’s PageRank algorithm
– Location Directed:

• (content doesn’t matter, only the URL does
– e.g. .com more important than .biz

26

Keeping Spidered Pages
Up to Date

• Web is very dynamic: many new pages, updated pages,
deleted pages, etc.

• Periodically check spidered pages for updates and
deletions:
– Just look at header info (e.g. META tags on last

update) to determine if page has changed, only
reload entire page if needed.

• Track how often each page is updated and preferentially
return to pages which are historically more dynamic.

• Preferentially update pages that are accessed more
often to optimize freshness of more popular pages.

Web Spam

• What are the types of Web spam?
– Add extra terms to get a higher ranking

• Repeat “cars” thousands of times
– Add irrelevant terms to get more hits

• Put a dictionary in the comments field
• Put extra terms in the same color as the background of

the web page
– Add irrelevant terms to get different types of hits
– Add irrelevant links to boost your link analysis ranking

• There is a constant “arms race” between web search companies
and spammers

27

Web Spam

• Most search engines have rules against
– invisible text
– meta tag abuse
– heavy repetition
– "domain spam”

• overtly submission of "mirror“ sites in an attempt to
dominate the listings for particular terms

Web Spam

• Excite screens out spamming before adding a page to its
web page index.
– if it finds a string of words such as:
– money money money money money money money
– it will replace the excess repetition, so that essentially, the string

becomes:
– money xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx

• The more Excite detects unusual repetition, the more
heavily it will penalize a page.

• Excite does not penalize for the use of hidden text, but
penalties will apply if hidden text is used to disguise
spam content.

• Excite penalises "domain spam."

28

Google Architecture Overview

• URL server
– Sends URLs to be fetched

to crawlers
• Crawler

– Downloads web pages
– Done by several distributed

crawlers
• Store Server

– Compresses and stores
web pages

• Repository
– Each web page associated

with docID

Google Architecture Overview
• Indexer

– Reads repository,
uncompresses docs, parses
them

– Each doc converted to set of
word occurences, “Hits”

• Record word, position, font,
capitalization

• Distributes hits into set of
“Barrels” creating partially
sorted forward index

– Parses all links in web pages
and stores them in “Anchor
File”

• Contains enough info to
determine where each link
points from and to and text of
link

29

Google Architecture Overview

• URL Resolver
– Reads anchor files
– Converts relative

URLs to absolute
URLs and in turn into
docIDs

– Puts anchor text into
forward index,
associated with docID
that the anchor points
to

– Generates database of
link (pairs of docIDs,
used to compute PR)

Google Architecture Overview
• Sorter

– Takes barrels sorted by docID
– Resorts by wordID to generate

inverted index
– Also produces list of wordIDs

and offsets into inverted index
• DumpLexicon

– Takes above list along with
lexicon produced by indexer

– Generates new lexicon for use
by “Searcher”

• Searcher
– Uses above lexicon with

inverted index and PR to
answer queries

30

Major Data Structures

1. Big Files
Virtual files spanning multiple file systems
Addressable by 64 bit integers
File system allocation handled automatically
Handles allocation and deallocation of file
descriptors
Support rudimentary compression options

Major Data Structures

2. Repository
• Contains full HTML of

every web page
• Each page compressed

with zlib
• Docs stored one after

another
• Prefix : docID, length,

URL
• Requires no other data

structure to be
accessed

31

Major Data Structures

4. Lexicon
• Fits in main memory
• Contains excess of 14

million words
• Implemented as:

– List of words
(concatenated, but
separated by nulls)

– Hash table of pointers

Major Data Structures

3. Document Index
• Keeps information about each doc
• It’s a fixed width ISAM (Index Sequential

Access Mode) index, ordered by docID
• Each entry includes current doc status, pointer

to repository, doc checksum
• If doc crawled, contains pointer to variable

width file, docinfo (contains its URL, title)
• Else, just contains URL

32

Major Data Structures
5. Hit Lists
• Occurrences of words in doc with

position, font, capitalization info
• Accounts for most space in forward,

inverted indices
• Uses hand optimized compact

encoding
• Types:

– Fancy Hits
• Hits occurring in URL, title, anchor

text, meta tag
• Capitalization Bit + Font Size 7 + 4

Bits to encode type, Position (8 Bits)
• Anchor Hits: Position bits split as 4

bits anchor position + 4 Bits docID
hash of anchor

– Plain Hits
• Capitalization bit + Font size (Relative,

3 Bits) + Word position (12 Bits)

Major Data Structures
6. Forward Index
• Partially sorted
• Stored in a no. of barrels (~64)
• Each barrel holds range of wordIDs
• Barrel stores docID of doc

containing word + list of wordIDs +
Hit lists

• Instead of actual wordID, relative
difference from minimum Barrel
wordID stored

• Leaves 8 bits for Hit list length

33

Major Data Structures
7. Inverted Index
• Consists of same barrels as

forward index that are
already processed by sorter

• For valid wordID, lexicon
contains pointer to Barrel
that wordID falls into

• Points to doclist of docIDs +
hit lists

• Doclist represents all
occurences of that word in
all docs

Major Applications

• Crawling the Web
– Uses fast distributed crawling system
– Each crawler maintains its own DNS cache

• Indexing the Web
– Parsing
– Indexing Documents into Barrels
– Sorting

• Searching

34

Google Query Evaluation

1. Parse the query.
2. Convert words into wordIDs.
3. Seek to the start of the doclist in the short barrel for

every word.
4. Scan through the doclists until there is a document that

matches all the search terms.
5. Compute the rank of that document for the query.
6. If we are in the short barrels and at the end of any

doclist, seek to the start of the doclist in the full barrel
for every word and go to step 4.

7. If we are not at the end of any doclist go to step 4.
Sort the documents that have matched by rank and
return the top k.

Single Word Query Ranking

• Hitlist is retrieved for single word
• Each hit can be one of several types: title, anchor, URL,

large font, small font, etc.
• Each hit type is assigned its own weight
• Type-weights make up vector of weights
• # of hits of each type is counted to form count vector
• Dot product of two vectors is used to compute IR score
• IR score is combined with PageRank to compute final

rank

35

Multi-word Query Ranking

• Similar to single-word ranking except now must
analyze proximity

• Hits occurring closer together are weighted
higher

• Each proximity relation is classified into 1 of 10
values ranging from a phrase match to “not even
close”

• Counts are computed for every type of hit and
proximity

Summary of Key Optimization
Techniques

– Each crawler maintains its own DNS lookup cache
– Parallelization of indexing phase
– In-memory lexicon
– Compression of repository
– Compact encoding of hitlists accounting for major space savings
– Indexer is optimized so it is just faster than the crawler so that

crawling is the bottleneck
– Document index is updated in bulk
– Critical data structures placed on local disk
– Overall architecture designed to avoid disk seeks wherever

possible

