

Introduction to
Enum Types

An enum type is a special data type that enables for a
variable to be a set of predefined constants.

The variable must be equal to one of the values that have
been predefined for it.

Common examples include compass directions (values of
NORTH, SOUTH, EAST, and WEST) and the days of the
week.

In the Java programming language, you define an enum
type by using the enum keyword.

MKCIOKIOOK

Example: days-of-the-week enum

public enum Day {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY

}

e e ——
F

public class EnumTest {
Day day;

public EnumTest(Day day) {
this.day = day;
}

public void tellltLikeltls() {
switch (day) {
case MONDAY:
System.out.printin("Mondays are bad.");
break;

case FRIDAY:
System.out.printIn("Fridays are better.");
break;

case SATURDAY: case SUNDAY:
System.out.printin("Weekends are best.");
break;

default:
System.out.printin("Midweek days are so-so.");
break;

}
}
R
s

e ———
F
public static void main(String[] args) {

EnumTest firstDay = new EnumTest(Day. MONDAY);

firstDay.tellltLikeltls();

EnumTest thirdDay = new EnumTest(Day.WEDNESDAY);

thirdDay.tellltLikeltls();

EnumTest fifthDay = new EnumTest(Day.FRIDAY);

fifthDay.tellltLikeltls();

EnumTest sixthDay = new EnumTest(Day.SATURDAY);

sixthDay.tellltLikeltls();

EnumTest seventhDay = new EnumTest(Day.SUNDAY);

seventhDay.tellltLikeltls();

The output is:

Mondays are bad.
Midweek days are so-so.
Fridays are better.
Weekends are best.
Weekends are best.

T ———

Example: programming-levels enum

The enum values are

enum Level { BEGINNER, INTERMEDIATE, EXPERT)}
: constant values.

class Game

Level gameLevel;

Variable of
type Level

class GameApp |
Game game null;

public void startGame () '
game = new Game () ; J Assigns constant
game .gameLevel = Level.BEGINNER; BEGINNER

Decompile enum level

enum is implicitly

final class Lewvel

{
public
public

final Lewvel BEGZINMNER;
final L 2] INTERMEDIATE:;
final Lewvel EXPERT;

final ILevel SVALUESI[] ;

BEGIMNNEE =
INTERMEDIATE
- new
= (new Leve {
BEEGINMNEE, INTEEMEDIATE,

1 {"BEGINMNER", Q) ;
Level ("INTERMEDIATE",

EXPERT

.clone ()

wralueOf (String

(Level) Enum.valueOf (Level, =)

o

Private
constructor

declared final.

@) enum constants are
implicitly public,
static, and final.

Array to store
reference to all
enum constants

Creation of

enum constants
occurs in static
initializer block

Method values return
an array of all enum
constants.

Method valueOf() parses a
String value and returns
corresponding enum constant

T ———

Enum Constructor

enum Direction {
EAST[EJ)I WEST[ISEF}I HDHTH[QG); SOUTH[E?G];

private Direction(final int angle) {
this.angle = angle;

private int angle;

public int getAngle() {

return angle;
}

T ———

Non-abstract Methods

public enum Direction {

EAST, WEST, NORTH, SOUTH;
protected String message() {

String message = "Moving in " + this + " direction”;
return message;

T ———

Abstract Methods

public enum Direction
5
[§
EAST {
poOverride
public String message() {
return "You are moving in east. You will face sun in morning time.";

WEST {
@0verride
public String message() {
return "You are moving in west. You will face sun in evening

NORTH {
poOverride
public String message() {
return "You are moving in north. Sea behind.";

SOUTH {
pOverride
public String message() {
return "You are moving in south. Sea ahead.";

public abstract String message();

T ———

EnumSet

Set enumSet = EnumSet.of(Direction.EAST,
Direction.WEST,
Direction.NORTH,
Direction.SOUTH

);

Map<Direction, Integer> enumMap = new EnumMap(Direction.class);

enumMap . put(Direction.EAST, Direction.EAST.getAngle());

enumMap . put(Direction.WEST, Direction.WEST.getAngle());
enumMap . put(Direction.NORTH, Direction.NORTH.getAngle());
enumMap . put(Direction.SOUTH, Direction.SOUTH.getAngle());

Rules to remember about enums

= An enum can define a main method. This means that you can define an enum
as an executable Java application.

m The enum constant list must be defined as the first item in an enum, before the
declaration or definition of methods and variables.

(continued)

The enum constant list might not be followed by a semicolon, if the enum
doesn’t define any methods or variables.

When an enum constant overrides an enum method, the enum constant creates
an anonymous class, which extends the enum.

An enum constant can define a constant specific class body and use it to over-
ride existing methods or define new variables and methods.

An enum implicitly extends java.lang.Enum, SO it can't extend any other class.
But a class can’t explicitly extend java.lang.Enum. An enum can implement
interface(s).

An enum can never be instantiated using the keyword new.

You can define multiple constructors in your enums.

An enum can't define a constructor with public or protected access level.

An enum can define an abstract method. Just ensure to override it for all your
enum constants.

The enum method values () returns a list of all the enum constants.

An enum can be defined as a top-level enum, or as a member or another class
or interface. It can’t be defined local to a method.

Conclusion

Enum declarations are full classes, and the values listed are constant names
referring to separate instances of these classes. The enum declaration can
contain fields, constructors, and methods, just like other classes.

Resources

List of resources you may use:

 https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

 https://blogs.oracle.com/javamagazine/post/how-to-make-the-
most-of-java-enums

https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://blogs.oracle.com/javamagazine/post/how-to-make-the-most-of-java-enums
https://blogs.oracle.com/javamagazine/post/how-to-make-the-most-of-java-enums

	Set 1
	Slide 1: Java Enums
	Slide 2: Introduction to Enum Types
	Slide 3: Example: days-of-the-week enum
	Slide 4
	Slide 5
	Slide 6: Example: programming-levels enum
	Slide 7: Decompile enum level
	Slide 8: Enum Constructor
	Slide 9: Non-abstract Methods
	Slide 10: Abstract Methods
	Slide 11: EnumSet
	Slide 12: EnumMap
	Slide 13
	Slide 14
	Slide 15: Conclusion
	Slide 16: Resources

