
JAVA RECORDS

Efthimios Alepis

CONTENTS

Summary

Primary goals

Description

Record Vs Class

Examples

SUMMARY
• Enhance the Java programming language with records, which are classes that

act as transparent carriers for immutable data.

• Records can be thought of as nominal tuples.

3

PRIMARY GOALS
• Devise an object-oriented construct that expresses a simple aggregation of

values.

• Help developers to focus on modeling immutable data rather than extensible
behavior.

• Automatically implement data-driven methods such as equals and accessors.

• Preserve long-standing Java principles such as nominal typing and migration
compatibility.

4

DESCRIPTION
• A record class declaration consists of a name; optional type parameters (generic

record declarations are supported); a header, which lists the "components" of the
record; and a body.

• A record class declares the following members automatically:

• For each component in the header, the following two members:

• A private final field with the same name and declared type as
the record component. This field is sometimes referred to as
a component field.

• A public accessor method with the same name and type of
the component; in the Rectangle record class example, these
methods are Rectangle::length() and Rectangle::width().

• A canonical constructor whose signature is the same as the header. This
constructor assigns each argument from the new expression that
instantiates the record class to the corresponding component field.

• Implementations of the equals and hashCode methods, which specify
that two record classes are equal if they are of the same type and contain
equal component values.

• An implementation of the toString method that includes the string
representation of all the record class's components, with their names.

• As record classes are just special kinds of classes, you create a record
object (an instance of a record class) with the new keyword

5

REMARKS
• You can explicitly declare any of the members derived from the header, such as

the public accessor methods that correspond to the record class's components

• If you implement your own accessor methods, then ensure that they have the
same characteristics as implicitly derived accessors

• If you implement your own versions of the equals, hashCode, and toString
methods, then ensure that they have the same characteristics and behavior as
those in the java.lang.Record class, which is the common superclass of all record
classes

• You can declare static fields, static initializers, and static methods in a record
class, and they behave as they would in a normal class

• You cannot declare instance variables (non-static fields) or instance initializers in
a record class

• You can declare instance methods in a record class, independent of whether you
implement your own accessor methods. You can also declare nested classes and
interfaces in a record class, including nested record classes (which are implicitly
static)

6

REMARKS CONTINUED
• You can create a generic record class

• You can declare a record class that implements one or more interfaces

• You can annotate a record class and its individual components

7

RECORD VS CLASS 8

EXAMPLE

9

10

CONCLUSION

11

Using records with their compiler-generated methods, we can reduce
boilerplate code and improve the reliability of our immutable classes.

FURTHER READING

https://openjdk.org/jeps/395

https://docs.oracle.com/en/java/javase/20/
language/records.html

https://openjdk.org/jeps/395
https://docs.oracle.com/en/java/javase/20/language/records.html
https://docs.oracle.com/en/java/javase/20/language/records.html

	Slide 1: Java Records
	Slide 2: Contents
	Slide 3: summary
	Slide 4: Primary goals
	Slide 5: Description
	Slide 6: remarks
	Slide 7: Remarks continued
	Slide 8: Record vs class
	Slide 9: example
	Slide 10
	Slide 11: conclusion
	Slide 12: Further reading

