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Theoretical Justifications (1 / 6)

* Training Data:

— We want to estimate a functionf : R" — {i 1}
using training data(Xx,,V,),.....(X,Y,) € R" x{ir 1}.

e Empirical Risk:
— measures classifier’s accuracy on training data
|
Remp[ f ] :Ilgi%‘ f (Xi)_ y|‘
e Risk:
— measures classifier’s generalization ability:

RIfI=]1f0-yldPx,y)



Theoretical Justifications (2 / 6)

e Structural risk minimization (SRM) is an
inductive principle.

e Commonly in machine learning, a generalized
model must be selected from a finite data set,
with the consequent problem of overfitting the
model becoming too strongly tailored to the
particularities of the training set and generalizing
poorly to new data.

e The SRM principle addresses this problem by
balancing the model's complexity against its
success at fitting the training data.
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Theoretical Justifications (3 / 6)

e VC Dimension: Vapnik — Chervonenkis dimension is
a measure of the capacity of a statistical classification
algorithm defined as the cardinality of the largest set
of points that the algorithm can shatter.

e Shuttering:

e aclassification model f(6) with some parameter vector 0 is
said to shatter a set of data points X = {x,,..., X} if, for all
assignments of labels to those points, there exists a 0 such

that the model f makes no errors when evaluating that set
of data points.



Theoretical Justifications (4 / 6)

e Examples:

— consider a straight line as the
classification model: the model
used by a perceptron.

— The line should separate
positive data points from
negative data points.

— An arbitrary set of 3 points can
indeed be shattered using this
model (any 3 points that are
not collinear can be shattered).

— However, there exists a set of 4
points that can not be
shattered. Thus, the VC
dimension of this particular
classifier is 3.




Theoretical Justifications (5 / 6)

e VCTheory provides bounds on the test error, which depend
on both empirical risk and capacity of function class.

e The bound on the test error of a classification model (on
data that is drawn i.i.d from the same distribution as the
training set) is given by:

h(log 2l +1)-log( Z
R(a)SRemp(a)_l_\/(ghl) 8(4)
with probability 1 —n.
where h is the VC dimension of the classification model, and
| is the size of the training set (restriction: this formula is
valid when the VC dimension is small h < |).




Theoretical Justifications (6 / 6)

* Vapnik has proved the following:

The class of optimal linear separators has VC
dimension h bounded from above as:

2
h < min{{D—2—|, n} +1
/4

— where y is the margin, D is the diameter of the
smallest sphere that can enclose all of the training
examples, and n is the dimensionality.



Introduction 1/ 2

e SVMs gained much popularity as the most

important recent discovery in machine
learning.

e In binary pattern classification problems

— generalize linear classifiers in high-dimensional
feature spaces through non-linear mappings
defined implicitly by kernels in Hilbert space.

— produce non-linear classifiers in the original space.



Introduction 2 / 2

 Initial linear classifiers are optimized to give
maximal margin separation between classes.

e This task is performed by solving some type of
mathematical programming such as quadratic
programming (QP) or linear programming (LP).



Hard Margin SVM 1 /26

e LetS={(x,Y,),....(X;,Y;)} be a set of training
patterns such thatx € R"and Y, €{-L1}.

e Each training input belongs to one of two
disjoints classes which are associated with the

abels ¥=+and ¥y, =-1.

e |f data points are linearly separable, it is
nossible to determine a decision function of
the following form: g(x) =w x+h=(w,x)+b
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Hard Margin SVM 2 / 26

wix+b=0
[ ]
wix+b>0 ¢
wix+b<0
[ )
O gx)=<wT x>+b
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Hard Margin SVM 3 / 26

The decision function g(x) defines a hyper
plane in the n-dimensional vector space ‘R"
which has the following property:

>0, fory, =+I;

<W,X>—|—b={
<0, fory =-1.

Since training data are linearly separable,
there will not be any training instances
satisfying: (w,x)+b =0



Hard Margin SVM 4 / 26

* In order to control separability we may write
that:

>+1, fory, =+1;

<W,X>+b={<

-1, fory, =-1.

* By incorporating class labels, inequalities may
be rewritten as: Y;((w,x;) +b) =21, Vi e[l]



Hard Margin SVM 5 / 26

A
Var,




Hard Margin SVM 6 / 26

e The hyperplane g(x)=(w,X)+b=cC for —-1<c<+1
forms a separating hyperplane in the n-
dimensional vector space R " that separates

x;, Vi €[l]
« WhenC=(), the separating hyperplane lies
within the middle of hyperplanesC==1

 The distance between the separating
hyperplane and the training datum nearest to
the hyperplane is called the margin.



Hard Margin SVM 7 / 26

e Assuming that hyperplanesg(x)=+1 and g(x)=-1
include at least one training datum, the
hyperplaneg(x)=0 has the maximum margin
for -1<c<+1.

* The region {X:—1<g(x)<+1} is called the
generalization region of the decision function.



Var,

Hard Margin SVM 8 / 26

IDEA : Select the
separating
hyperplane that
maximizes the
margin!
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Hard Margin SVM 9 / 26

Decision functions g,(x) and g,(x) are
separating hyperplanes.

Such separating hyperplanes are not unique.

Choose the one with higher generalization
ability.

Generalization ability depends exclusively on
separating hyperplane location.

Optimal Hyperplane is the one that maximizes
margin.



Hard Margin SVM 10 / 26

e Assuming:
— no outliers within the training data

— the unknown test data will obey the same
probability law as that of the training data

e Intuitively clear that generalization ability will
be maximized if the optimal hyperplane is
selected as the separating hyperplane



Hard Margin SVM 11 / 26
Optimal Hyperplane Determination |

 The Euclidean distance for a training datum x
to the separating hyperplane parameterized
by (w, b) is given by:

R(X;W,b)=| g(x)| _[(W,x)+D|

lwll | wl|

 Notice that w is orthogonal to the separating
hyperplane.

e Linel(x;w)goes through x being orthogonal
to the separating hyperplane.



Hard Margin SVM 12 / 26

Optimal Hyperplane Determination Il
Var,




Hard Margin SVM 13 / 26
Optimal Hyperplane Determination Il

e |a| is the Euclidean distance from x to the
hyperplane.

e I(x;w)crosses the separating hyperplane at the
point whereg(l(x;w))=0.

g(l(x;w)) =10
w'l(x;w)+b =10

a
wT(

I w

w +x)+b =20

g ¢ ¢ ¢ 09



Hard Margin SVM 14 / 26
Optimal Hyperplane Determination IV

* Let X', X be two data points lying on the
hyperplanes gx)=+H and gx)=-1 respectively.
 Optimal hyperplane is determined by
specifying (w, b) that maximize the quantity:
1

y——{R(x ;w,0)+R(x " ;w,b))} =
lwl

e y corresponds to the geometric margin.



Hard Margin SVM 15 / 26

optimal separating hyperplane is obtained by
maximizing the geometric margin.

equivalent to minimizing the quantity f(w)——IIwII2
subject to the constraints:

y.((w,x.)+b)>1,Vie[l]

The Euclidean norm | |w| | used to transform
the optimization problem into a QP.

The assumption of separability means that
there exist (w, b) (feasible solutions) that
satisfy the constraints.



Hard Margin SVM 16 / 26

Optimization Problem:
— guadratic objective function
— inequality constraints defined by linear functions

Even if the solutions are non-unique, the value
of the objective function is unique.

Non-uniqueness is not a problem for support
vector machines.

Advantage of SVMs over neural networks
which have several local optima.
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Hard Margin SVM 17 / 26

Var, .

Var,
W-)?+b:0

 Optimal Separating Hyperplane will remain the same
even if it is computed by removing all the training
patterns that satisfy the strict inequalities.

e Points on both sides of the separating hyperplane
satisfying the corresponding equalities are called
support vectors.



Hard Margin SVM 18 / 26

Primal Optimization Problem of Hard Margin
SVM:

|
min— || w |
w.b

s.ty.((w,x.)+b)>1 Vie]l]

Variables of the convex primal optimization
problem are the parameters (w, b) defining the
separating hyperplane.

Variables = Dimensionality of the input space
plus 1 which is n+1.

When n is small, the solution can be obtained by
QP technique.




Hard Margin SVM 19 / 26

SVMs operate by mapping input space into
high-dimensional feature spaces which in
some cases may be of infinite dimensions.

Solving the optimization problem is then too
difficult to be addressed in its primal form.

Natural solution is to re-express the
optimization problem in its dual form.

Variables in dual representation = Number of
training data.



Hard Margin SVM 20/ 26

 Transform the original primal optimization
problem into its dual by computing the
Lagrangian function of the primal form.

L(wb.a) = (W, W)= D& (W, x) +b) - 1

e a=[a,...a ] matrix of non-negative Lagrange
multipliers.



Hard Margin SVM 21 / 26

 The dual problem is formulated as:

max min L(w,D, a)

a w.b

sta >0,Viell]

 Kuhn-Tucker Theorem: necessary and
sufficient conditions for a normal point (w,b)
to be an optimum is the existence of a'such
that:
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Hard Margin SVM 22 / 26

6L(V‘;k,b*,a*) * I *
=) —=> w-= x. (1)
. g,a VX
aL *,b*, %k |
(Wao a):O = 2.a¥=0 (

Hard Margin SVM

a* {y, (<W*, Xl > +b*)—1)} :O, \v/i E[I] (111) Karush-Kuhn-Tucker

Complementarity Conditions

Y, (W™, x,)+b")=1)>0,Vie[l] av

a >0,Vie[l] v



Hard Margin SVM 23 / 26

e Substituting (1),(Il) in the original Lagrangian
we get:

L(w.b.a)=>"a —%iia.a VY% X;)

e The Dual Optimization Problem:

maxZa ——Zza yj<Xi9Xj>

|1]1

.t Z a'y. =0
=1

and a, > 0,Vi e[l]




Hard Margin SVM 24 / 26

e Dependence on original primal variables is
removed.

e Dual formulation:

— number of variables = number of the training
patterns

— concave quadratic programming problem

— if a solution exists (linearly separable classification
problem) then exists a global solution fora™.



Hard Margin SVM 25 / 26

e Karush-Kuhn-Tuck Complementarity
Conditions:
— for active constraints(a =0) we have that:
V. ((W",x.)+b")=1) >0
— for inactive constraints (a >0) we have that:
V(W x)+0)-1)=0
* Training data points x for whicha; >0
corresponds to support vectors lying on
hyperplanes g(x) = +1 and g(x) = -1.



Hard Margin SVM 26 / 26

e Geometric margin (optimal hyperplane):
|

Fw " |

Yo =

. Optimal Hyperplane:
g(x) = Zay.<x.,x>+b > ay(x,x)+b’

ieSV

. Optimal b parameter:

{(n —N)= D (W, X))}

1SV




Soft Margin SVM 1/ 11

e Linearly inseparable data:
— no feasible solution

— optimization problem corresponding to Hard
Margin Support Vector Machine unsolvable.
e Remedy: extension of Hard Margin paradigm
by the so called Soft Margin Support Vector
Machine.

* Key ldea: allow for some slight error
represented by slack variables £( =0).



Soft Margin SVM 2 / 11

e Introduction of slack variables yields that the
original inequalities will be reformulated as:

Yi((w,x)+0)=1-g, Vi €]l]

e Utilization of slack variables guarantees the
existence of feasible solutions for the
reformulated optimization problem.



Var,

Soft Margin SVM 3/ 11

5> 1
3

Var,
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Soft Margin SVM 4/ 11

 Optimal Separating Hyperplane correctly
classifies all training patterns x. for which:

0 <& <leven if they do not have the
maximum margin.

e Optimal Separating Hyperplane fails to
correctly classify those training patterns for
which: & >1.



Soft Margin SVM 5/ 11

* Primal optimization problem of Soft Margin
SVM introduces a tradeoff parameter C
between maximizing margin and minimizing
the sum of slack variables.

e Margin: directly influences generalization
ability of the classifier.

 Sum of Slack Variables: quantifies the
empirical risk of the classifier.

SVM Tutorial
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Soft Margin SVM 6/ 11

* Primal Optimization Problem of Soft Margin
SVIVI:

m1n—|| w I’ +CZ§

wa

s.t. y,((w,x|>+b)21 &, Viell]
and & > 0,Vie[l]

. _agranglan
L(Wba)——<WW> Zay,(<wx> bZaY.JrZ{C a, - B}
a=la..ala>0 I
p=1p...51 F>0,i € []]



Soft Margin SVM 7 / 11

 The dual problem is formulated as:

max min L(w,b,a)
a,f w,b,¢

sta >0,vie[l]
and . >0,Vie[l]
 Kuhn-Tucker Theorem: necessary and
sufficient conditions for a normal point(ﬁ,bk,f)
to be an optimum is the existence of (a*, %)
such that:
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Soft Margin SVM 8 / 11
aL(w*,b*,é*,a*,ﬂ*)ZO — W”‘ZIZai”‘yixi (1)

oW
aL(w*,b;,g*,a*,ﬁ*):O —> C-a -g =0Vie[l]. m
LW £ =5 Yary =0 ()

ob i=1
a {y.((w,x)+b")-1+&)} =0,Vie[l]av) T

Complementarity

lBié:i — Oa\vll S [I] (V) Conditions
V. (W, x)Y+b)—-1+&)>20,Vie[l] w

a’ >0,vVie[l] (vn)
L =0,Vie[l] (vin)



Soft Margin SVM 9/ 11

e Equations (Il),(VIl) and (VIII) may be combined
as: 0<a; <C.

e Substituting (l),(I1) and (Ill) in the original
Lagrangian we get

L(w,b,a) = Za ——ZZa YY)

|1]1

e Dual optlmlzatlon problem:

maxZa ——ZZaa ViV X, X;)

i=1 j=I

s.tz a'y, =0anda, > 0,Vie[l]
i1

and_,b’i >0,Viell]




Soft Margin SVM 10/ 11

e Karush-Kuhn-Tuck Complementarity
Conditions:
— active constraints:a, =0= £ =C#0=¢ =0
corresponding training patterns X; are correctly
classified.

— Inactive constraints:
e (unbounded support vectors)
0<a <C=L#20=<L=0=y.(w,x,)+b") =1
e (bounded support vectors)

a =C=>p=0=%20=>y.((W,x)+b")-1+& =0

SVM Tutorial



Soft Margin SVM 11 /11

Geometric margin (optimal hyperplane):
1

I w ™|
Optimal b parameter:

b* = —{(ny =) — D, (W, x,)}

nu‘|‘ SV,

Optlmalg parameters:

& =max(0,1-y.((w',x.))+b")
Optimal Hyperplane

y' =

g(x)—Za y(x,,x)+b" = Z a y|<x|,x>+b

ieSV i




Linear SVMs Overview

The classifier is a separating hyperplane.

Most “important” training points are support
vectors as they define the hyperplane.

Quadratic optimization algorithms can identify
which training points x;are support vectors
with non-zero Lagrangian multipliers a.

Both in the dual formulation of the problem
and in the solution training points appear only
inside inner products.
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Mapping Data to High Dimensional
Feature Spaces (1 / 4)

e Datasets that are linearly separab e with some

noise work out great: —s—s—s@——®- :
X

 But what are we going to do if the dataset is

justtoo hard? e—s—se oo oo =
0 X

e How about... mapping data to a higher-

dimensional space:
4 X2




Mapping Data to High Dimensional
Feature Spaces (2 / 4)

 General idea: the original input space can always
be mapped to some higher dimensional feature
space where the training set is separable.

g N

X2
e e, @
o . o D: x— ¢(x)
o . ........
o ° o
o
-
° le ° X
o °
pu ®
o g -
® 3
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Mapping Data to High Dimensional
Feature Spaces (3 / 4)

Find function ®(x) to map to a different space, then
SVM formulation becomes:

min [’ +C 3 ¢

st. y.(<xw,d(Xx) I> +b)>1-¢&,, VX,

£ >0

Data appear as ®(x), weights w are now weights in the
new space.

Explicit mapping expensive if @(x) is very high
dimensional.

Solving the problem without explicitly mapping the
data is desirable.



Mapping Data to

High Dimensional

Feature Spaces (4 / 4)

Original SVM formulation mibn%HWHz +CY ¢

— n inequality constraints
— n positivity constraints

— n number of ¢ constraints

Dual formulation
— one equality constraint
— n positivity constraints

— n number of o variables|

(Lagrange multipliers)

st y.(W-d(x)+b)>1-¢, VX
& 20

m_in%Zaiajyiyj <D(X) - D(X;)>-) a
' ij i

st. Cza, 20,VX

Zaiyi =0

— NOTICE: Data only appear

as <D(x;) , D(x;)>




Kernel Trick (1/ 2)

The linear classifier relies on inner product between
vectors K(x ;, X )= <x ;,x >.

If every data point is mapped into high-dimensional
space via some transformation @: x - ¢$(x), the inner
product becomes:

K(X |? xj)= <¢(X /)rd)(x ])>
A kernel function is some function that corresponds to
an inner product in some expanded feature space.
We can find a function such that:

— K(<x;, x;>) =<D(x;) , D(x, )> i.e., the image of the inner
product of the data is the'inner product of the images of
the data.



Kernel Trick (2/ 2)

* Then, we do not need to explicitly map the
data into the high-dimensional space to solve
ne optimization problem (for training)

t
* How do we classify without explicitly mapping
the new instances? Turns out:

— Optimal Hyperplane:9(x) = Za VK0 +b"= D a K (x, 0+’

— Optimal b parameter:b* =

—{(ny =)= 2, KW',x)}

r'Iu T u 1eSV,

— Optimal § parameter: & =max(0,1-Yy.(K(w",x,))+b")



Kernels (1 / 5)
Examples |

e 2D input space mapped to 3D feature space:
where X,y € R”

K(xi X)) = (< x;,X; >) = g(x) =[ V2x,%,

2 y?
2 x y 2 I 1
(X-y) = ' = \/§X1X2 ' \/Eylyz
X1 LY 2 2
L X, 11 Y, ]

= (0(xX)-0(y)) =k(x,Y)



Kernels (2 / 5)

Examples Il
2D input space mapped to 6D feature space:

X=[x; x,]; let K(x;, x )=(1+<x,, x;>)*

Need to show that K(x;, x ;)= < ¢(x ), P(x )>:
K(x;,x ;)=(1 + <x;, x ;>)*=

1+ X;°X,0% + 2 XX XipXigt Xip? X2 + 22X X, + 2X X, =
[1 X% V2 X;3Xiy X2 V233 V2X]T (1 X7 V2 X;0X, X7 V2X;; V2X)5] =

=< ¢(x;), P(x j)>

where d(x) = [1 x,2 V2 x,x, X,° V2x, V2x,]



Kernels (3 / 5)

Which functions are kernels?

For some functions K(x;, X;) checking that
K(Xjs X;) = <0(X;) *@(X;)> can be easy.

Is there a mapping ®(x) for any symmetric
function K(x, z)? No

The SVM dual formulation requires calculation
K(x;, x;) for each pair of training instances. The
array G; = K(x;, x;) is called the Gram matrix.



Kernels (4 / 5)

K(X1:X1) | K(X3,X5) | K(X1,X3) K(X1:X))
K(X2:X1) | K(X2,X5) | K(X3,X3) K(X2:X))
K(X,X1) | K(XpXp) | K(X},X3) K(X},X))

 There is a feature space ®(x) when the Kernel
is such that G is always semi-positive definite
(Mercer Theorem)

— A symmetric matrix A is said to be pos:tlve semi-
definite if, for any non 0 vector x : X' AX>0)




Kernels (5 / 5)

* Linear: K(x;,X;)= <x;x;>
— Mapping ©: x = ¢(x), where P(x) is x itself.
* Polynomial of power p: K(x;,x;)= (1+ <x;, x>)°

— Mapping ®: x = é(x), where d(x) has (”;pj
dimensions.

2
x|

e Gaussian (radial-basis function): K(x;,x,)=e 2=

— Mapping ©: x=> ¢d(x), where d(x) is infinite-
dimensional.



Conclusions

Neural Networks

Hidden Layers maF to
lower dimensiona
spaces

Search space has
multiple local minima

Training is expensive

Classification
extremely efficient

Requires number of
hidden units and layers

Very good accuracy in
typical domains

SVMs

Kernel maps to a very-
high dimensional space

Search space has a
unique minimum

Training is extremely
efficient

Classification extremely
efficient

Kernel and cost the two
parameters to select

Very good accuracy in
typical domains

Extremely robust



