Support Vector Machines

Dionysios N. Sotiropoulos
Ph.D
(dsotirop@gmail.com)

Presentation Summary

- Introduction
- Theoretical Justifications
- Linear Support Vector Machines
 - Hard Margin Support Vector Machines
 - Soft Margin Support Vector Machines
- Non-Linear Support Vector Machines
 - Mapping Data to High Dimensional Feature Spaces
 - Kernel Trick
 - Kernels
- Conclusions

Theoretical Justifications (1 / 6)

- Training Data:
 - We want to estimate a function $f: R^N \to \{\pm 1\}$ using training data $(x_1, y_1), \dots, (x_l, y_l) \in R^N \times \{\pm 1\}$.
- Empirical Risk:
 - measures classifier's accuracy on training data

$$R_{emp}[f] = \frac{1}{l} \sum_{i=1}^{l} \frac{1}{2} |f(x_i) - y_i|$$

- Risk:
 - measures classifier's generalization ability:

$$R\left[f\right] = \int \frac{1}{2} |f(x) - y| dP(x, y)$$

Theoretical Justifications (2 / 6)

- Structural risk minimization (SRM) is an inductive principle.
- Commonly in machine learning, a generalized model must be selected from a finite data set, with the consequent problem of overfitting the model becoming too strongly tailored to the particularities of the training set and generalizing poorly to new data.
- The SRM principle addresses this problem by balancing the model's complexity against its success at fitting the training data.

Theoretical Justifications (3 / 6)

 VC Dimension: Vapnik – Chervonenkis dimension is a measure of the capacity of a statistical classification algorithm defined as the cardinality of the largest set of points that the algorithm can shatter.

• Shuttering:

• a classification model $f(\theta)$ with some parameter vector θ is said to *shatter* a set of data points $X = \{x_1, ..., x_l\}$ if, for all assignments of labels to those points, there exists a θ such that the model f makes no errors when evaluating that set of data points.

Theoretical Justifications (4 / 6)

Examples:

 consider a straight line as the classification model: the model used by a perceptron.

- The line should separate positive data points from negative data points.
- An arbitrary set of 3 points can indeed be shattered using this model (any 3 points that are not collinear can be shattered).
- However, there exists a set of 4 points that can not be shattered. Thus, the VC dimension of this particular classifier is 3.

Theoretical Justifications (5 / 6)

- VC Theory provides bounds on the test error, which depend on both empirical risk and capacity of function class.
- The bound on the test error of a classification model (on data that is drawn i.i.d from the same distribution as the training set) is given by:

$$R(\alpha) \le R_{emp}(\alpha) + \sqrt{\frac{h(\log \frac{2l}{h} + 1) - \log(\frac{\eta}{4})}{l}}$$

with probability $1 - \eta$.

where h is the VC dimension of the classification model, and l is the size of the training set (restriction: this formula is valid when the VC dimension is small h < l).

Theoretical Justifications (6 / 6)

Vapnik has proved the following:

The class of optimal linear separators has VC dimension h bounded from above as:

$$h \le \min\left\{ \left\lceil \frac{D^2}{\gamma^2} \right\rceil, n \right\} + 1$$

 – where γ is the margin, D is the diameter of the smallest sphere that can enclose all of the training examples, and n is the dimensionality.

Introduction 1 / 2

- SVMs gained much popularity as the most important recent discovery in machine learning.
- In binary pattern classification problems
 - generalize linear classifiers in high-dimensional feature spaces through non-linear mappings defined implicitly by kernels in Hilbert space.
 - produce non-linear classifiers in the original space.

Introduction 2 / 2

- Initial linear classifiers are optimized to give maximal margin separation between classes.
- This task is performed by solving some type of mathematical programming such as quadratic programming (QP) or linear programming (LP).

Hard Margin SVM 1/26

- Let $S = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_l, y_l)\}$ be a set of training patterns such that $x_i \in \mathbb{R}^n$ and $y_i \in \{-1,1\}$.
- Each training input belongs to one of two disjoints classes which are associated with the labels $y_i = +1$ and $y_i = -1$.
- If data points are linearly separable, it is possible to determine a decision function of the following form: $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \langle \mathbf{w}, \mathbf{x} \rangle + b$

Hard Margin SVM 2 / 26

$$g(\mathbf{x}) = \langle \mathbf{w}^\mathsf{T}, \mathbf{x} \rangle + b$$

Hard Margin SVM 3 / 26

• The decision function $g(\mathbf{x})$ defines a hyper plane in the n-dimensional vector space \Re^n which has the following property:

$$\langle \mathbf{w}, \mathbf{x} \rangle + b = \begin{cases} > 0, & \text{for } y_i = +1; \\ < 0, & \text{for } y_i = -1. \end{cases}$$

• Since training data are linearly separable, there will not be any training instances satisfying: $\langle \mathbf{w}, \mathbf{x} \rangle + b = 0$

Hard Margin SVM 4 / 26

 In order to control separability we may write that:

$$\langle \mathbf{w}, \mathbf{x} \rangle + b = \begin{cases} \geq +1, & \text{for } y_i = +1; \\ \leq -1, & \text{for } y_i = -1. \end{cases}$$

• By incorporating class labels, inequalities may be rewritten as: $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1, \forall i \in [l]$

Hard Margin SVM 5 / 26

Hard Margin SVM 6 / 26

• The hyperplane $g(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = c$ for -1 < c < +1 forms a separating hyperplane in the n-dimensional vector space \Re^n that separates

$$\mathbf{x}_i, \forall i \in [l]$$

- When c=0, the separating hyperplane lies within the middle of hyperplanes $c=\pm 1$
- The distance between the separating hyperplane and the training datum nearest to the hyperplane is called the margin.

Hard Margin SVM 7 / 26

- Assuming that hyperplanes $g(\mathbf{x}) = +1$ and $g(\mathbf{x}) = -1$ include at least one training datum, the hyperplane $g(\mathbf{x}) = 0$ has the maximum margin for -1 < c < +1.
- The region $\{x:-1 \le g(\mathbf{x}) \le +1\}$ is called the generalization region of the decision function.

Hard Margin SVM 8 / 26

Hard Margin SVM 9 / 26

- Decision functions $g_1(\mathbf{x})$ and $g_2(\mathbf{x})$ are separating hyperplanes.
- Such separating hyperplanes are not unique.
- Choose the one with higher generalization ability.
- Generalization ability depends exclusively on separating hyperplane location.
- Optimal Hyperplane is the one that maximizes margin.

Hard Margin SVM 10 / 26

- Assuming:
 - no outliers within the training data
 - the unknown test data will obey the same probability law as that of the training data
- Intuitively clear that generalization ability will be maximized if the optimal hyperplane is selected as the separating hyperplane

Hard Margin SVM 11 / 26 Optimal Hyperplane Determination I

 The Euclidean distance for a training datum x to the separating hyperplane parameterized by (w, b) is given by:

$$R(\mathbf{x}; \mathbf{w}, b) = \frac{|g(\mathbf{x})|}{\|\mathbf{w}\|} = \frac{|\langle \mathbf{w}, \mathbf{x} \rangle + b|}{\|\mathbf{w}\|}$$

- Notice that w is orthogonal to the separating hyperplane.
- Line l(x; w) goes through x being orthogonal to the separating hyperplane.

Hard Margin SVM 12 / 26 Optimal Hyperplane Determination II

Hard Margin SVM 13 / 26 Optimal Hyperplane Determination III

- |a| is the Euclidean distance from x to the hyperplane.
- $l(\mathbf{x}; \mathbf{w})$ crosses the separating hyperplane at the point where $g(l(\mathbf{x}; \mathbf{w})) = 0$.

$$g(l(x; w)) = 0 \Leftrightarrow w^{T}l(x; w) + b = 0 \Leftrightarrow w^{T}l(x; w) + b = 0 \Leftrightarrow w^{T}(\frac{a}{\parallel w \parallel}w + x) + b = 0 \Leftrightarrow \frac{a}{\parallel w \parallel}w^{T}w + w^{T}x + b = 0 \Leftrightarrow \frac{a}{\parallel w \parallel}w^{T}\parallel w \parallel^{2} = -w^{T}x - b \Leftrightarrow a = -\frac{g(x)}{\parallel w \parallel} \Leftrightarrow |a| = \frac{g(x)}{\parallel w \parallel}$$

Hard Margin SVM 14 / 26 Optimal Hyperplane Determination IV

- Let \mathbf{x}^+ , \mathbf{x}^- be two data points lying on the hyperplanes $g(\mathbf{x}) = +1$ and $g(\mathbf{x}) = -1$ respectively.
- Optimal hyperplane is determined by specifying (w, b) that maximize the quantity:

$$\gamma = \frac{1}{2} \{ R(\mathbf{x}^+; \mathbf{w}, b) + R(\mathbf{x}^-; \mathbf{w}, b) \} = \frac{1}{\|\mathbf{w}\|}$$

• γ corresponds to the geometric margin.

Hard Margin SVM 15 / 26

- optimal separating hyperplane is obtained by maximizing the geometric margin.
- equivalent to minimizing the quantity: $f(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2$ subject to the constraints:

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1, \forall i \in [l]$$

- The Euclidean norm ||w|| used to transform the optimization problem into a QP.
- The assumption of separability means that there exist (w, b) (feasible solutions) that satisfy the constraints.

/M Tutorial 25

Hard Margin SVM 16 / 26

- Optimization Problem:
 - quadratic objective function
 - inequality constraints defined by linear functions
- Even if the solutions are non-unique, the value of the objective function is unique.
- Non-uniqueness is not a problem for support vector machines.
- Advantage of SVMs over neural networks which have several local optima.

Hard Margin SVM 17 / 26

- Optimal Separating Hyperplane will remain the same even if it is computed by removing all the training patterns that satisfy the strict inequalities.
- Points on both sides of the separating hyperplane satisfying the corresponding equalities are called support vectors.

Hard Margin SVM 18 / 26

 Primal Optimization Problem of Hard Margin SVM:

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$
s.t $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1, \forall i \in [l]$

- Variables of the convex primal optimization problem are the parameters (w, b) defining the separating hyperplane.
- Variables = Dimensionality of the input space plus 1 which is n+1.
- When n is small, the solution can be obtained by QP technique.

28

Hard Margin SVM 19 / 26

- SVMs operate by mapping input space into high-dimensional feature spaces which in some cases may be of infinite dimensions.
- Solving the optimization problem is then too difficult to be addressed in its primal form.
- Natural solution is to re-express the optimization problem in its dual form.
- Variables in dual representation = Number of training data.

Hard Margin SVM 20 / 26

 Transform the original primal optimization problem into its dual by computing the Lagrangian function of the primal form.

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle - \sum_{i=1}^{l} a_i \{ y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \}$$

• $\mathbf{a} = [a_1 ... a_l]^T$ matrix of non-negative Lagrange multipliers.

Hard Margin SVM 21 / 26

The dual problem is formulated as:

```
\max_{\mathbf{a}} \min_{\mathbf{w},b} L(\mathbf{w},b,\mathbf{a})<br/>s.t a_i \ge 0, \forall i \in [l]
```

 Kuhn-Tucker Theorem: necessary and sufficient conditions for a normal point (w*,b*) to be an optimum is the existence of a*such that:

Hard Margin SVM 22 / 26

$$\frac{\partial L(\mathbf{w}^*,b^*,\mathbf{a}^*)}{\partial \mathbf{w}} = \mathbf{0} \implies \mathbf{w}^* = \sum_{i=1}^l a_i^* y_i \mathbf{x}_i \quad (1)$$

$$\frac{\partial L(\mathbf{w}^*, b^*, \mathbf{a}^*)}{\partial b} = 0 \qquad \Longrightarrow \quad \sum_{i=1}^l a_i^* y_i = 0 \quad \text{(II)}$$

$$a_i^* \{ y_i(\langle \mathbf{w}^*, \mathbf{x}_i \rangle + b^*) - 1 \} = 0, \forall i \in [l] \quad (\text{III})$$

Hard Margin SVM
Karush-Kuhn-Tucker
Complementarity Conditions

$$y_i(\langle \mathbf{w}^*, \mathbf{x}_i \rangle + b^*) - 1) \ge 0, \forall i \in [l] \quad (IV)$$

$$a_i^* \ge 0, \forall i \in [l]$$
 (V)

Hard Margin SVM 23 / 26

 Substituting (I),(II) in the original Lagrangian we get:

$$L(\mathbf{w}, b, \mathbf{a}) = \sum_{i=0}^{l} a_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} a_i a_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

The Dual Optimization Problem:

$$\max_{\mathbf{a}} \sum_{i=0}^{l} a_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} a_i a_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

$$\text{s.t } \sum_{i=1}^{l} a_i^* y_i = 0$$

$$\text{and } a_i \ge 0, \forall i \in [l]$$

Hard Margin SVM 24 / 26

- Dependence on original primal variables is removed.
- Dual formulation:
 - number of variables = number of the training patterns
 - concave quadratic programming problem
 - if a solution exists (linearly separable classification problem) then exists a global solution for \mathbf{a}^* .

Hard Margin SVM 25 / 26

- Karush-Kuhn-Tuck Complementarity Conditions:
 - for active constraints($\mathbf{a}_{i}^{*}=0$) we have that: $y_{i}(\langle \mathbf{w}^{*}, \mathbf{x}_{i} \rangle + b^{*}) 1) > 0$
 - for inactive constraints ($\mathbf{a}_{i}^{*} > 0$) we have that: $y_{i}(\langle \mathbf{w}^{*}, \mathbf{x}_{i} \rangle + b^{*}) 1) = 0$
- Training data points \mathbf{x}_i for which $\mathbf{a}_i^* > 0$ corresponds to support vectors lying on hyperplanes $g(\mathbf{x}) = +1$ and $g(\mathbf{x}) = -1$.

Hard Margin SVM 26 / 26

Geometric margin (optimal hyperplane):

$$\gamma^* = \frac{1}{\|\mathbf{w}^*\|}$$

Optimal Hyperplane:

$$g(\mathbf{x}) = \sum_{i=1}^{l} a_i^* y_i \langle \mathbf{x}_i, \mathbf{x} \rangle + b^* = \sum_{i \in SV} a_i^* y_i \langle \mathbf{x}_i, \mathbf{x} \rangle + b^*$$

Optimal b parameter:

$$b^* = \frac{1}{n^+ + n^-} \{ (n^+ - n^-) - \sum_{i \in SV_{SVM Tutorial}} \langle \mathbf{w}^*, \mathbf{x}_i \rangle \}$$

Soft Margin SVM 1 / 11

- Linearly inseparable data:
 - no feasible solution
 - optimization problem corresponding to Hard Margin Support Vector Machine unsolvable.
- Remedy: extension of Hard Margin paradigm by the so called Soft Margin Support Vector Machine.
- Key Idea: allow for some slight error represented by slack variables $\xi(\xi \ge 0)$.

Soft Margin SVM 2 / 11

• Introduction of slack variables yields that the original inequalities will be reformulated as: $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 - \xi_i, \forall i \in [l]$

 Utilization of slack variables guarantees the existence of feasible solutions for the reformulated optimization problem.

 $\begin{array}{c} \text{Var}_2 \\ \text{SVM Tutorial} \end{array}$

Soft Margin SVM 4 / 11

- Optimal Separating Hyperplane correctly classifies all training patterns \mathbf{x}_i for which: $0 < \xi_i < 1$ even if they do not have the maximum margin.
- Optimal Separating Hyperplane fails to correctly classify those training patterns for which: $\xi_i > 1$.

Soft Margin SVM 5 / 11

- Primal optimization problem of Soft Margin SVM introduces a tradeoff parameter C between maximizing margin and minimizing the sum of slack variables.
- Margin: directly influences generalization ability of the classifier.
- Sum of Slack Variables: quantifies the empirical risk of the classifier.

Soft Margin SVM 6 / 11

 Primal Optimization Problem of Soft Margin SVM:

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{l} \xi_i$$
s.t. $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 - \xi_i, \forall i \in [l]$
and $\xi_i \ge 0, \forall i \in [l]$

Lagrangian:

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle - \sum_{i=1}^{l} a_i y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle - b \sum_{i=1}^{l} a_i y_i + \sum_{i=1}^{l} \{C - a_i - \beta_i\} \xi_i$$

$$\mathbf{a} = [a_1 \dots a_l]^T a_i \ge 0, \ \mathbf{i} \in [1]$$

$$\beta = [\beta_1 \dots \beta_l]^T \beta_i \ge 0, \ \mathbf{i} \in [1]$$
₄₂

Soft Margin SVM 7 / 11

The dual problem is formulated as:

```
\max_{\mathbf{a},\beta} \min_{\mathbf{w},b,\xi} L(\mathbf{w},b,\mathbf{a})
s.t a_i \ge 0, \forall i \in [l]
and \beta_i \ge 0, \forall i \in [l]
```

• Kuhn-Tucker Theorem: necessary and sufficient conditions for a normal point (\mathbf{w},b^*,ξ^*) to be an optimum is the existence of (\mathbf{a}^*,β^*) such that:

Soft Margin SVM 8 / 11

$$\frac{\partial L(\mathbf{w}^*, b^*, \xi^*, \mathbf{a}^*, \boldsymbol{\beta}^*)}{\partial \mathbf{w}} = \mathbf{0} \implies \mathbf{w}^* = \sum_{i=1}^l a_i^* y_i \mathbf{x}_i \quad (1)$$

$$\frac{\partial L(\mathbf{w}^*, b^*, \xi^*, \mathbf{a}^*, \boldsymbol{\beta}^*)}{\partial \xi} = \mathbf{0} \implies C - a_i^* - \beta_i^* = 0, \forall i \in [l]. \quad (11)$$

$$\frac{\partial L(\mathbf{w}^*, b^*, \xi^*, \mathbf{a}^*, \boldsymbol{\beta}^*)}{\partial b} = 0 \implies \sum_{i=1}^l a_i^* y_i = 0 \quad (111)$$

$$a_i^* \{ y_i(\langle \mathbf{w}^*, \mathbf{x}_i \rangle + b^*) - 1 + \xi_i \} = 0, \forall i \in [l] \text{ (IV)}$$

KKT Complementarity Conditions

$$\beta_i \xi_i = 0, \forall i \in [l]$$
 (V)

$$y_i(\langle \mathbf{w}^*, \mathbf{x}_i \rangle + b^*) - 1 + \xi_i) \ge 0, \forall i \in [l]$$
 (VI)

$$a_i^* \ge 0, \forall i \in [l]$$
 (VII)

$$\beta_i^* \ge 0, \forall i \in [l]$$
 (VIII)

Soft Margin SVM 9 / 11

- Equations (II),(VII) and (VIII) may be combined as: $0 \le a_i^* \le C$.
- Substituting (I),(II) and (III) in the original Lagrangian we get:

$$L(\mathbf{w},b,\mathbf{a}) = \sum_{i=0}^{l} a_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} a_i a_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
• Dual optimization problem:

$$\max_{\mathbf{a}} \sum_{i=0}^{l} a_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} a_i a_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

$$\text{s.t} \sum_{i=1}^{l} a_i^* y_i = 0 \text{ and } a_i \ge 0, \forall i \in [l]$$

$$\text{and } \beta_i \ge 0, \forall i \in [l]$$

$$\text{SVM Tutorial}$$

Soft Margin SVM 10 / 11

- Karush-Kuhn-Tuck Complementarity Conditions:
 - active constraints: $a_i^* = 0 \Rightarrow \beta_i = C \neq 0 \Rightarrow \xi_i = 0$ corresponding training patterns \mathbf{x}_i are correctly classified.
 - inactive constraints:
 - (unbounded support vectors)

$$0 < a_i^* < C \Rightarrow \beta_i \neq 0 \Rightarrow \xi_i = 0 \Rightarrow y_i(\langle \mathbf{w}^*, \mathbf{x}_i \rangle + b^*) = 1$$

(bounded support vectors)

$$a_i^* = C \Rightarrow \beta_i = 0 \Rightarrow \xi_i \neq 0 \Rightarrow y_i(\langle \mathbf{w}^*, \mathbf{x}_i \rangle + b^*) - 1 + \xi_i = 0$$

Soft Margin SVM 11 / 11

Geometric margin (optimal hyperplane):

$$\gamma^* = \frac{1}{\| \mathbf{w}^* \|}$$

Optimal b parameter:

$$b^* = \frac{1}{n_u^+ + n_u^-} \{ (n_u^+ - n_u^-) - \sum_{i \in SV_u} \langle \mathbf{w}^*, \mathbf{x}_i \rangle \}$$

• Optimal ξ_i parameters:

$$\xi_i^* = \max(0, 1 - y_i(\langle \mathbf{w}^*, \mathbf{x}_i \rangle) + b^*)$$

Optimal Hyperplane:

$$g(\mathbf{x}) = \sum_{i=1}^{l} a_{i}^{*} y_{i} \langle \mathbf{x}_{i}, \mathbf{x} \rangle + b^{*} = \sum_{i \in SV} a_{i}^{*} y_{i} \langle \mathbf{x}_{i}, \mathbf{x} \rangle + b^{*}$$
SVM Tutorial $i \in SV$

Linear SVMs Overview

- The classifier is a separating hyperplane.
- Most "important" training points are support vectors as they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_i are support vectors with non-zero Lagrangian multipliers α_i .
- Both in the dual formulation of the problem and in the solution training points appear only inside inner products.

Mapping Data to High Dimensional Feature Spaces (1 / 4)

- Datasets that are linearly separable with some noise work out great:
- But what are we going to do if the dataset is just too hard?
- How about... mapping data to a higherdimensional space:

Mapping Data to High Dimensional Feature Spaces (2 / 4)

 General idea: the original input space can always be mapped to some higher dimensional feature space where the training set is separable.

Mapping Data to High Dimensional Feature Spaces (3 / 4)

• Find function $\Phi(x)$ to map to a different space, then SVM formulation becomes:

$$\min \frac{1}{2} ||w||^{2} + C \sum_{i} \xi_{i}$$
s.t. $y_{i} (< w, \Phi(x) > +b) \ge 1 - \xi_{i}, \forall x_{i}$
 $\xi_{i} \ge 0$

- Data appear as $\Phi(x)$, weights w are now weights in the new space.
- Explicit mapping expensive if $\Phi(x)$ is very high dimensional.
- Solving the problem without explicitly mapping the data is desirable.

Mapping Data to High Dimensional Feature Spaces (4 / 4)

- Original SVM formulation
 - n inequality constraints
 - n positivity constraints
 - n number of ξ constraints
- $\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i} \xi_{i}$ s.t. $y_{i}(w \cdot \Phi(x) + b) \ge 1 \xi_{i}, \forall x_{i}$ $\xi_{i} \ge 0$

- Dual formulation
 - one equality constraint
 - n positivity constraints
 - n number of α variables (Lagrange multipliers)
 - NOTICE: Data only appear as $\langle \Phi(x_i) \rangle$

$$\min_{a_i} \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j < \Phi(x_i) \cdot \Phi(x_j) > -\sum_i \alpha_i$$

$$s.t. \ C \ge \alpha_i \ge 0, \forall x_i$$

$$\sum_i \alpha_i y_i = 0$$

Kernel Trick (1/2)

- The linear classifier relies on inner product between vectors $K(\mathbf{x}_{1}, \mathbf{x}_{i}) = \langle \mathbf{x}_{1}, \mathbf{x}_{i} \rangle$.
- If every data point is mapped into high-dimensional space via some transformation $\Phi: x \to \varphi(x)$, the inner product becomes:

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \rangle.$$

- A kernel function is some function that corresponds to an inner product in some expanded feature space.
- We can find a function such that:
 - $-K(\langle x_i, x_j \rangle) = \langle \Phi(x_i), \Phi(x_j) \rangle$, i.e., the image of the inner product of the data is the inner product of the images of the data.

Kernel Trick (2/2)

- Then, we do not need to explicitly map the data into the high-dimensional space to solve the optimization problem (for training)
- How do we classify without explicitly mapping the new instances? Turns out:
 - Optimal Hyperplane: $g(\mathbf{x}) = \sum_{i=1}^{l} a_i^* y_i K(\mathbf{x}_i, \mathbf{x}) + b^* = \sum_{i \in SV} a_i^* y_i K(\mathbf{x}_i, \mathbf{x}) + b^*$
 - Optimal b parameter: $b^* = \frac{1}{n_u^+ + n_u^-} \{ (n_u^+ n_u^-) \sum_{i \in SV_u} K(\mathbf{w}^*, \mathbf{x}_i) \}$
 - Optimal ξ parameter: $\xi_i^* = \max(0, 1 y_i(K(\mathbf{w}^*, \mathbf{x}_i)) + b^*)$

VM Tutorial

54

Kernels (1 / 5) Examples I

2D input space mapped to 3D feature space:

$$K(\mathbf{x}_i, \mathbf{x}_j) = (\langle \mathbf{x}_i, \mathbf{x}_j \rangle)^2 \Rightarrow \phi(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ \sqrt{2}x_1 x_2 \\ x_2^2 \end{pmatrix}$$
 where $x, y \in \mathbb{R}^2$

$$(x \cdot y)^{2} = \left(\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \cdot \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix}\right)^{2} = \left(\begin{bmatrix} x_{1}^{2} \\ \sqrt{2} x_{1} x_{2} \\ x_{2}^{2} \end{bmatrix} \cdot \begin{bmatrix} y_{1}^{2} \\ \sqrt{2} y_{1} y_{2} \\ y_{2}^{2} \end{bmatrix}\right)$$
$$= (\varphi(x) \cdot \varphi(y)) = k(x, y)$$

Kernels (2 / 5) Examples II

2D input space mapped to 6D feature space:

$$\mathbf{x} = [x_1 \ x_2]; \text{ let } K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \langle \mathbf{x}_i, \mathbf{x}_j \rangle)^2,$$
Need to show that $K(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{\phi}(\mathbf{x}_i), \mathbf{\phi}(\mathbf{x}_j) \rangle$:
$$K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \langle \mathbf{x}_i, \mathbf{x}_j \rangle)^2 =$$

$$1 + x_{i1}^2 x_{j1}^2 + 2 x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2} =$$

$$[1 \ x_{i1}^2 \ v^2 \ x_{i1} x_{i2} \ x_{i2}^2 \ v^2 x_{i1} \ v^2 x_{i2}]^T [1 \ x_{j1}^2 \ v^2 \ x_{j1} x_{j2} \ x_{j2}^2 \ v^2 x_{j1} \ v^2 x_{j2}] =$$

$$= \langle \mathbf{\phi}(\mathbf{x}_i), \mathbf{\phi}(\mathbf{x}_j) \rangle$$
where $\mathbf{\phi}(\mathbf{x}) = [1 \ x_1^2 \ v^2 \ x_1 x_2 \ x_2^2 \ v^2 x_1 \ v^2 x_2]$

Kernels (3 / 5)

- Which functions are kernels?
- For some functions $K(\mathbf{x}_i, \mathbf{x}_j)$ checking that $K(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$ can be easy.
- Is there a mapping $\Phi(x)$ for any symmetric function K(x, z)? No
- The SVM dual formulation requires calculation $K(x_i, x_j)$ for each pair of training instances. The array $G_{ij} = K(x_i, x_j)$ is called the Gram matrix.

Kernels (4 / 5)

- There is a feature space $\Phi(x)$ when the Kernel is such that G is always semi-positive definite (Mercer Theorem)
 - A <u>symmetric</u> matrix **A** is said to be **positive semidefinite** if, for any non 0 vector $\mathbf{x} : x^T A x \ge 0$

Kernels (5 / 5)

- Linear: $K(\mathbf{x}_i, \mathbf{x}_i) = \langle \mathbf{x}_i, \mathbf{x}_i \rangle$
 - Mapping Φ : $\mathbf{x} \rightarrow \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ is \mathbf{x} itself.
- Polynomial of power $p: K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \langle \mathbf{x}_i, \mathbf{x}_j \rangle)^p$
 - Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ has $\binom{n+p}{p}$ dimensions.
- Gaussian (radial-basis function): $K(x_i, x_j) = e^{-\frac{1}{2\sigma^2}}$
 - Mapping Φ : $\mathbf{x} \rightarrow \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ is *infinite-dimensional*.

Conclusions

Neural Networks

- Hidden Layers map to lower dimensional spaces
- Search space has multiple local minima
- Training is expensive
- Classification extremely efficient
- Requires number of hidden units and layers
- Very good accuracy in typical domains

SVMs

- Kernel maps to a veryhigh dimensional space
- Search space has a unique minimum
- Training is extremely efficient
- Classification extremely efficient
- Kernel and cost the two parameters to select
- Very good accuracy in typical domains
- Extremely robust