J. Parallel Distrib. Comput. 104 (2017) 12-18

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

PARALLELAND
DISTRIBUTED
COMPUTING

Accelerating an algorithm for perishable inventory control on

heterogeneous platforms

@ CrossMark

Alejandro Gutierrez-Alcoba®*, Gloria Ortega b Eligius M.T. Hendrix ¢, Inmaculada Garcia*®

@ Department of Computer Architecture, Escuela de Ingenierias, ¢/ Dr Ramos, University of Mdlaga, Mdlaga, 29071, Spain
b Informatics Department, University of Almeria, Agrifood Campus of Int. Excell. (ceiA3), Almeria, 04120, Spain

HIGHLIGHTS

Optimization algorithm for perishable inventory control problems.

Workload balancing through heuristic for the Bin-Packing problem.

Design of parallel implementations for distributed and shared memory platforms.
Task distribution modelling for the inventory control problem on multi-GPU clusters.

ARTICLE INFO ABSTRACT

Article history:

Received 26 October 2015
Received in revised form

20 October 2016

Accepted 21 December 2016
Available online 28 December 2016

Keywords:

Perishable inventory control
GPU computing
Heterogeneous computing
Optimization

Monte-Carlo simulation

This paper analyses and evaluates parallel implementations of an optimization algorithm for perishable
inventory control problems. This iterative algorithm has high computational requirements when
solving large problems. Therefore, the use of parallel and distributed computing reduces the execution
time and improves the quality of the solutions. This work investigates two implementations on
heterogeneous platforms: (1) a MPI-PTHREADS version; and (2) a multi-GPU version. A comparison of
these implementations has been carried out. Experimental results show the benefits of using parallel and
distributed codes to solve this kind of problems.

Furthermore, the distribution of the workload among the available processing elements is a
challenging problem. This distribution of tasks can be modelled as a Bin-Packing problem. This implies
that the selection of the set of tasks assigned to every processing element requires the design of a heuristic
capable of efficiently balancing the workload statically with no significant overhead. This heuristic has
been used for the parallel implementations of the optimization for perishable inventory control problem.

Bin-Packing problem

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The main objective of this work consists of determining up
to what extent the use of heterogeneous platforms (multicore
and multi-GPU) accelerates the solution process of a novel opti-
mization algorithm for an inventory control problem of perish-
able products. Our goal is to study how to take advantage of the
computing capacity of these architectures to obtain more accurate
solutions when large problems are considered, which imply high
computational demand, keeping a reasonable response time.

* Corresponding author.
E-mail addresses: agutierreza@uma.es (A. Gutierrez-Alcoba),
gloriaortega@ual.es (G. Ortega), eligius@uma.es (E.M.T. Hendrix), igarciaf@uma.es
(I Garcia).

http://dx.doi.org/10.1016/j.jpdc.2016.12.021
0743-7315/© 2016 Elsevier Inc. All rights reserved.

The perishable inventory control problem presented in this pa-
per is defined over a finite horizon of T periods of a perishable prod-
uct in which a fixed percentage of the non-stationary stochastic
demand has to be satisfied according to a so-called fill rate ser-
vice level requirement. The perishable product has a fixed shelf
life of J periods. In the modelling of this problem, it is supposed
that] < T and the dynamics of the inventory follows the FIFO
issuance (first in, first out), in which the oldest product is issued
first. Items of age J cannot be used in the next period and are con-
sidered waste. The goal is to minimize the cost related to the pro-
duction, distribution, storage and waste. [8] describes an algorithm
based on Monte-Carlo simulation of the demand, specifically de-
signed to solve this problem. This algorithm is able to determine
the optimal order policy and the corresponding order quantities ef-
ficiently. However, the computational burden grows exponentially
in the time horizon.

http://dx.doi.org/10.1016/j.jpdc.2016.12.021
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.12.021&domain=pdf
mailto:agutierreza@uma.es
mailto:gloriaortega@ual.es
mailto:eligius@uma.es
mailto:igarciaf@uma.es
http://dx.doi.org/10.1016/j.jpdc.2016.12.021

A. Gutierrez-Alcoba et al. /]. Parallel Distrib. Comput. 104 (2017) 12-18 13

Currently, extended High Performance Computing architec-
tures are heterogeneous platforms composed of distributed mem-
ory systems, where every processing element (node) has a
multicore architecture with a certain number of cores [10]. These
heterogeneous platforms offer higher peak performance compared
to traditional CPUs being both energy and cost efficient. Never-
theless, programming for heterogeneous environments is a te-
dious task and has a long learning curve. In this context, paral-
lel implementations should be modified in order to be executed
over such heterogeneous architectures. Therefore, it is necessary to
have a good knowledge of both, the algorithm to parallelize and the
computational resources used for the implementation [13]. Fur-
thermore, accelerators, such as GPUs, FPGAs, Intel Xeon Phi copro-
cessors and so on, can be included on these architectures.

Inventory control problems for perishable products have been
studied since the seventies. Recently several new inventory mod-
els for controlling perishable items have appeared. For instance,
[14] considers an inventory system for perishable products where
demand follows a Poisson distribution, service interruptions, re-
trial demands and negative customers are considered. The study
obtains a (s, S) policy, i.e. an order is placed whenever inventory
drops below a level s. In [18], a MILP (Mixed-Integer Linear Pro-
gramming) approximation for an or order up to level policy is
presented. For practical cases, the solutions obtained by this ap-
proximation are less than 5% higher than those obtained by the
optimal policy. Authors in [15] consider a joint dynamic pricing
and inventory control policy for stochastic inventory and perish-
able products. They obtain the optimal dynamic policy by solving
a Hamilton - Jacobi - Bellman equation. Authors in [5] study a joint
pricing and a dynamic production policy for perishable items, with
the addition that shortages are not allowed, deriving the optimal
sales price and designing algorithms to compute them. However,
to the best of our knowledge, no study has been done with respect
to the use of heterogeneous platforms for computer-intensive in-
ventory control models for deriving optimal order policies for per-
ishable product inventory control. Related to the acceleration of
the Monte-Carlo simulation, required for the model described in
this paper, recent works can be found in the literature in order to
efficiently compute this simulation on heterogeneous platforms
[11,16].

In this study, the algorithm to solve the perishable inventory
control problem has been implemented on Multi-GPU clusters, as
an example of heterogeneous platforms. In a Multi-GPU cluster,
there are several distributed memory nodes, where every node is
composed of a shared memory multicore architecture and one or
more GPUs. Each GPU has a separate memory space. Therefore,
if data dependencies among GPUs occur, communication via PCI-
Express is needed. The main advantages of using Multi-GPU com-
puting are as follows: (1) the use of massively parallel platforms
(GPUs) facilitates speeding up the most computationally intensive
tasks, because these devices have enough computational power to
calculate vectorial computation schemes; and (2) when the prob-
lem to solve is large enough, several distributed memory nodes
can be used (with/without GPUs). In the literature, heterogeneous
computing has been used to accelerate the execution of a wide va-
riety of numerical models [17,23]. For the inventory control prob-
lem, the use of parallel and distributed platforms improves the
accuracy of the results; parallel computation allows executions
with a larger number of simulations to solve a particular problem
in a reasonable runtime.

The parallel computational model associated to this problem
can be described in terms of a set of independent tasks. However,
the computational burden associated to each task is different and
therefore a workload balancing problem may appear when the
workload is distributed in a blind way. The problem of assigning
tasks to processing elements is well-known in the literature as

the Bin-Packing problem [6]. Because this problem is NP-hard,
several heuristics have been developed to distribute the workload
efficiently among the available platforms.

The rest of the paper is organized as follows. Section 2 discusses
the perishable inventory control problem. In Section 3, the im-
plemented sequential algorithm to solve the problem is outlined.
Section 4 describes the details of the implemented parallel ver-
sions and several heuristics for distributing the workload among
the available processing elements are described and evaluated.
Section 5 studies and analyses the results of running various imple-
mentations on heterogeneous platforms. Finally, conclusions are
drawn in Section 6.

2. Description of the model

The basis of the implementations presented in this work is
an algorithm developed in Matlab to solve a MINLP (Mixed
Integer NonLinear Programming) problem, [8]. The algorithm sets
a schedule, along a finite number of periods T, for the quantities
that must be provided of a product in order to satisfy the demand
under a g service level requirement implying that for every period
and in terms of the expected value, more than a fraction 8 of
the demand is satisfied. This is equivalent to at most a fraction
(1 — B) of demand is lost due to a stock-out. The shelf life of the
product after which the product perishes and becomes waste is
J < T periods. Furthermore, items are served following a FIFO rule:
products are served starting from the oldest ones.

The optimization problem consists of finding the quantities of
the product that must be provided at every period such that the
restrictions are met and the value of the objective function is mini-
mized. These quantities have to be determined at the beginning of
the planning horizon, following a static uncertainty strategy over
demand: the order quantities have to be defined for all T periods
before realization of demand. If the decision maker is able to adapt
the production over the periods as the demand is observed, one
may use another strategy. An approach to this scenario is discussed
in[9].

The model is specified as follows.

Indices
t period index,t =1,...,T
j ageindex,j=1,..., J, with J the shelf life of the product
Data
d; Demand at every period following normal distributions with mean
e > 0and variance (cv x p,)? given by a coefficient of variation
cv, equal at every period.
k Ordering cost, k > 0
c Unit cost,c > 0
h Holding cost,h > 0
w Waste cost, can be negative, but w > —c
B Required service level,0 < 8 < 1
Variables
Q>0 Order quantity in period t.
Q represents the vector (Qq, ..., Qr)
Y, € {0, 1} Indicates if order takes place in period t.
Y; = 1ifand only if Q; > 0.
Y denotes vector (Yq, ..., Y1)
X; Lost sales at period t
I Inventory of age j at the end of period t, [jy = 0,

L >0j=1,...J

The notation E(-) is used to express the expected value of a
stochastic variable (in bold face) and (-)* = max(., 0).

The objective function to be minimized depends on the vector
Q = (Qq, ..., Qr) and can be defined as follows:

T J-1
flQ= Z (C(Qt) +E (h ljr + w‘jr)) s (1)

t=1 Jj=1

14 A. Gutierrez-Alcoba et al. /]. Parallel Distrib. Comput. 104 (2017) 12-18

where

C(x) =k+cx, ifx>0, and C(0)=0. (2)
The inventory of products of age j at the end of periodt =1, ..., T
follows the FIFO rule:

-1 +
(@ — (d; — le,t_o*) i=1
j=1

Ijt = (lj—l,[—l - dr)+ J‘=], (3)
-1 +
(Ij_uq —(d; — Zli,[_lﬁ) Otherwise.
i=j

The service level requirement can be expressed as follows:
EX)<=(A—-Bpu, t=1,...,T. (4)
The value of the lost sales in each period t is given by

-1 *
Xt = <d[- le,t—l — Qt) . (5)
=1

The expected value of the lost sales is a function known as the
loss-function, that in general does not have a closed-form expres-
sion. Some approximations to this function can be found in the
literature in [12,20,21,24]. Monte-Carlo simulation has been used
for this model in order to obtain a good estimation of the loss-
function. Having set the conditions detailed before, the problem of
finding the quantities that have to be ordered to minimize the ob-
jective function (1) and at the same time finding the timing vec-
tor Y e {0, 1}7 for the optimal policy, is a MINLP (Mixed Integer
NonLinear Programming) problem. As will be shown, the computa-
tional model associated to this problem exhibits appropriate prop-
erties for being implemented on heterogeneous high performance
computers architectures.

3. Sequential algorithm

This section describes the algorithm for solving the inventory
control problem of Section 2. Algorithm 1 represents the highest
level of abstraction for the solution method. Firstly, the method
generates all timing vectors in set {0, 1}7 that are feasible for the
values of T and J. A timing vector Y € {0, 1}7 is considered
infeasible if it contains a series of more than J sequential zeros (J
or more periods without placing an order), since demand cannot
be met. For a specific timing vector Y, Algorithm 2 determines, for
each period, the order quantity of product Q(Y) that minimizes
objective function (1).

Algorithm 1 performs an exhaustive evaluation over the set of
feasible timing vectors (except for the cases discarded by the lower
bound check), to find the optimal timing vector Y* and, at the same
time, the vector of the optimal order quantities Q* = Q(Y*) with
associated cost f(Q*). Each vector Y is composed of a number of
cycles: a cycle is a set of periods in which a replenishment is set
in the first period of the cycle, to cover the demand for all periods
of the cycle. In any vector Y, a cycle is identified by a period with
value 1 and a sequence of zeros from none to] — 1.

For the determination of the optimal quantities, Q(Y), the
method uses a table of so-called base order quantities gz, with
the required quantity at period t to cover the demand of a cycle
of R periods when inventory is zero. This quantity is the order
quantity for those order periods where no inventory is available.
Let m =) _ Y, be the number of orders, then Algorithm 2 starts by
identifying m-dimensional vector A with the order moments and
vector B with the last period of each cycle.

For each replenishment period, that is, any period t in which
Y, = 1, Algorithm 2 calculates the minimum order quantity that

Algorithm 1 AllY(): Finds the optimal timing vector (Y*)
calculating the optimal cost of all feasible timing vectors Y

1: Generate all feasible Y

2: forall Y do
3 Qy=MINQ(Y); # Algorithm 2
4: Determine f (Qy)
5
6

: end for
: return Y*; Q*; f(Q*) = mincost

Algorithm 2 MinQ (Y): Q (Y) optimization
1: Generate vectors A and B for Y
2: fori = 1tomdo
3 if A; = 1orB;_; — A;_; =] then # No Invent.

4: Qu; = GBi—an.ac

5: else

6: solve floss(Qa;, Ai, B)) = (1 — B) s,
7: end if

8: end for

9: return Q;

guarantees that the service level is fulfilled for that cycle. For each
cycle, the optimal order quantity Qu, is the one that makes that
the lost sales are equal to the lower bound of (4) in period B.
When there is no inventory, Q4 can be taken as the base quantity
[8]. When inventory is not zero, Monte-Carlo simulation of the
inventory is used to give an accurate approximation. Function floss
(q, a, b) in Algorithm 3 handles the simulation and returns the
approximation of the expected value of lost sales for the last period
of the cycle when q units are ordered at period a for a cycle with
(b — a) + 1 periods. An external function, like the secant method
in [8], can iteratively look for the value of q for which (4) is fulfilled
with equality.

Algorithm 3 floss(q, a, b): Monte-Carlo method approximating
E(X) based on N sample paths d;

1: forn=1to N do
2: Simulate [j; p,t =a,...,b; j=1,...,]

N
3: Xpn loss in sample n at end period b, Y xpn

n=1
4: end for
N
5: Average loss X, = % > Xpn approximates E (X)
n=1
6: return Xp;

4. Parallel implementations

The order of complexity of Algorithm 1, is related to the number
of feasible timing vectors Y, which depends on the values of | and
T. Independently of the value of], the number of feasible cases to
process increases exponentially with the value of T. This means
that the complexity is O(e"). Moreover, in Algorithm 2, the optimal
value of the Q(Y) vector is found for a specific feasible Y; its
complexity depends on the number of iterations needed to solve
the equation in line 6 which is bounded by T. Evaluation of floss in
Algorithm 3 (Monte-Carlo simulations) requires N simulations of
the inventory for every period in the cycle and all possible ages of
the product (1, ...,]J).

Therefore, the order of complexity of the whole method to
find the optimal timing vector Y and the optimal quantities, is
approximately O(N - T - eT).

Algorithm 3 requires simulation to obtain approximations of
the floss function. This function consumes most of the computa-
tional runtime of the algorithm. A higher number of demand paths

A. Gutierrez-Alcoba et al. /]. Parallel Distrib. Comput. 104 (2017) 12-18 15

800

o0 N | 20000 samples | 1

600k —=-30000 samples| |

— 50000 samples

500f

4001

Density

3001

200r

100}

0 ! =
0.046 0.048 0.05 0.052 0.054

EIX,]/ 1,

Fig. 1. Density functions of the estimation of the percentage of the expected value
of ﬁ—‘; according to the Algorithm 3 using N = 20000, 30000, 50000 sample paths.

in the Monte-Carlo simulation provides more accurate approxi-
mations of the lost sales (floss function). The standard deviation
of the estimate std(Xp) reduces with N according to std(Xp) =
%. Fig. 1 shows the density distribution of estimating the per-
centage of lost sales Xp, when X, is estimated based on N =
20000, 30000, 50000 sample paths for a case that analytically

gives the value £%2) — 0,05, that is, the lost sales is 5% of the ex-

pected demand 5.

Therefore, approximating the expected lost sales (X) accurately
requires a sufficiently high number N of sample paths. This
represents the main computational workload of the problem.

From a parallel point of view, Algorithm 1 can be decomposed
into independent tasks, as there are hardly dependencies in the
computation associated to each Y. So, the loop “for” in Algorithm
1 can be executed in parallel. However, the computational burden
associated to each Y is different and requires distributing vectors
Y among the available processing elements in a balanced way. To
do that, an estimation of the workload for each Y is needed.

The workload associated to a feasible timing vector Y (Algo-
rithm 2) can be estimated. In this way, the most time-consuming
task of this approach (the Monte-Carlo simulations) can be taken
into account to find the optimal solution. More precisely, the
Monte Carlo simulation for an order depends on the length of the
replenishment cycle which varies between 1 andJ periods. Follow-
ing Algorithm 2, for cycles in which there is no left inventory, the
quantity of product needed is already known from the so-called ba-
sic quantities. After that, only one Monte-Carlo simulation must be
carried out. For any other period, an external function iteratively
performs Monte-Carlo simulation up to a certain accuracy. With
the method used in [8], the number of iterations of Algorithm 3
needed to solve the equation line 6 of Algorithm 2 depends on the
accuracy chosen and an average value of K iterations can be as-
sumed. The workload of any vector Y can be taken as the accumu-
lation of Monte-Carlo simulations per period that are needed, as
sketched in Algorithm 4.

Now that the parallel decomposition of the problem has been
analysed, the details of the implemented approaches are described
in the following sections. Section 4.1 describes the computational
platform and programming interfaces for the MPI-PTHREADS im-
plementation and Section 4.2 gives the Multi-GPU implementa-
tion. In Section 4.3, the heuristics used to distribute the workload
among processing elements are discussed. Implementations de-
scribed in 4.1 and 4.2 have been carried out on a heterogeneous
platform which consists of a multi-GPU cluster (composed of sev-
eral nodes with multicores and GPU devices). The exploitation of a

Algorithm 4 Rank(Y): Workload approximation for Y

1: Generate vectors A and B for Y
2: fori = 1tomdo

3: length_cycle = B;_1 — Ai_1;

4: if A; = 1 or length_cycle =] then # No Invent.
5: v+ = length_cycle;

6: else

7: v+ = length_cycle - K

8: end if

9: end for

10: return v;

heterogeneous platform has two main advantages: (1) larger prob-
lems can be solved; and (2) it can be done in less runtime.

e MPI-PTHREADS: obtains the parallelism of the nodes and
the multicore processors available in the cluster. Therefore,
programming with POSIX Threads (Pthreads') and distributed
programming based on Message Passing Interface (MPI) are
used [3,22].

e Multi-GPU: uses GPUs in order to parallelize the Monte-Carlo
simulation, which is the most computationally demanding task
of the problem. For this, the CUDA? interface is used. In this case,
the implementation uses MPI and CUDA.

4.1. MPI-PTHREADS implementation

Focusing now on the MPI-PTHREADS implementation, paral-
lelism has been exploited on two levels: at node level (distributed
memory) and at multicore level (shared memory). On one hand, at
node level, and thanks to its portability, Message Passing Interface
(MPI) [22] has become a standard for multiple-processor program-
ming of code that runs on a variety of machines. On the other hand,
there are multiple ways of parallelizing routines in shared memory
models. One standard library is POSIX threads (or Pthreads), which
supplies a unified set of C routines facilitating the use of threads in
codes [3].

A hybrid parallelization (MPI and Pthreads) of the optimization
algorithm for perishable inventory control problem described in
Section 3 has been implemented. At the beginning of Algorithm 1,
the set of timing vectors Y are distributed among cores following
the rules of a heuristic designed for balancing the workload which
is discussed in Section 4.3. This MPI-PTHREADS implementation
has been tested in a Bullx cluster and obtained results are described
in Section 5.

4.2. Multi-GPU implementation

The Multi-GPU version has been based on the exploitation of
several GPUs for the parallelization of the Monte-Carlo method,
computed by the flossGPU function (see Algorithm 5). In this
implementation, each MPI process can open one or two threads
and every thread initializes the CUDA interface. Timing vectors
Y are distributed among cores in the same way as in the MPI-
PTHREADS implementation (following the rules of a heuristic
designed for balancing the workload which is discussed in
Section 4.3). Only Monte-Carlo simulations are computed on the
GPU, the remaining tasks are computed by the CPU (cores).
The N sample paths in the Monte-Carlo simulation have been
implemented to run independently. At the same time, the
calculation of the inventory level at each age (3) depends only on

1 https://computing.lInl.gov/tutorials/pthreads/
2 https://developer.nvidia.com/cuda-toolkit

https://computing.llnl.gov/tutorials/pthreads/
https://developer.nvidia.com/cuda-toolkit

16 A. Gutierrez-Alcoba et al. /]. Parallel Distrib. Comput. 104 (2017) 12-18

Algorithm 5 flossGPU (q, a, b): Monte-Carlo method for obtaining
an approximation of E (X)
1: fort =atobdo
2 forn = 1to N do #GPU
3 Update Jj¢p,j=1,...,] and X
4: end for
5: end for

N
6: Average loss X, = . > Xpy approximates E (X)
n=1

1
N

7: return Xp;

the inventory level of the previous period. Then, proceeding by
periods, a CUDA kernel is responsible to compute N simulations
of the J ages of the inventory in parallel.

In Algorithm 5, Monte-Carlo simulation (flossGPU function) is
performed on one or several GPUs. The external loop simulates the
periods, while the inner loop computes N samples on the GPU.
This way, each GPU launches N threads in parallel, computing
the same sequence of instructions over different input data.
Thus, the programmer can consider the GPU as a set of SIMT
(Single Instruction, Multiple Threads). Each GPU thread stores
its partial computation in the shared memory. To generate the
approximation of X, one reduction of the N values computed
and stored in shared memory has to be included. One additional
issue has been the optimization of the occupancy on the GPU.
The occupancy determines how well the hardware is kept busy
with the goal of hiding latencies, by switching between active
warps, due to memory operations and paused warps. Occupancy
is closely related to the thread block size (BS) and the number
of registers and shared memory size used by a kernel. Therefore,
a good choice of BS will improve the performance. Experimental
results of Section 5 have considered the best BS size (512) to
optimize the performance of the GPU code.

Section 5 presents the experimental results of both implemen-
tations, MPI-PTHREADS and Multi-GPU.

4.3. Heuristics for the Bin-Packing problem

The problem for distributing the workload of Algorithm 1
among processors can be modelled as a Bin packing problem. The
Bin-Packing problem is a combinatorial optimization problem (NP-
complete) and for the inventory problem, it can be described as
follows: Given a set of L independent runs of the same algorithm
with workload 0 < w; < C,i = 1,...,L, for each independent
run i of Algorithm 2 (the feasible timing order vectors) and a set
of P processors (Bins), distribute the runs of the algorithm among
the processors p = 1, ..., P such that the maximum workload
assigned to a processor is as low as possible. See [6] for a general
formulation of the Bin-Packing problem.

Due to the hardness of finding optimal solutions for this kind of
problems, some heuristics capable of finding acceptable solutions
in a reasonable time are usually considered, some of them are
based on evolutionary computation, e.g. [1]. Here, we have tested
three heuristics (H1, H2 and H3) which are able to provide
approximate solutions to the workload balancing problem. These
heuristics attempt to distribute the workload w; equally over the
available cores.

1. (H1) is based on Round Robin scheduling: Sort w; from high

to low and assign to p following the pattern (1,...,P,P,P —
1,...,1,1,...).
2. (H2): Fori =1, ..., L assign w; to processor p with the lowest

gathered workload.
3. (H3): Similar to heuristic H2, but in this case w; is sorted
previously from high to low values.

0.04 0.25

10.20

10.15

0.02 1
1 0.10

1 0.05

0 20 40 60 80 100 120
Workload

Fig. 2. Probability density functions of I"(10, 4), I'(1, 25), U(0, 100) used to
generate the 4000 samples combined with the distribution of the inventory
instance, A.

To evaluate the heuristics, three instances called I'y, I, and U
were generated by taking L = 4000 weights w; at random from
gamma distributions I" (10, 4) and I" (1, 25) and from the uniform
distribution U (0, 100), respectively. Moreover, an instance A was
taken from a real workload distribution of the inventory control
problem with T = 15 andJ = 3. Fig. 2 sketches the corresponding
distributions.

To calculate the workload balancing assigned to each processor,
the coefficient of Gini (G) [7] has been used in this work following
the examples in [4,19,2]. This coefficient has been widely used
in economy to measure the degree of inequality and wealth
distribution for large populations. The Gini index varies between
0 representing complete equity and 1 if all the wealth (workload)
of the population belongs to only one individual (processor)[7]. Let
W, be the workload assigned to processor p,p = 1,..., P sorted
in ascending order. The Gini coefficient G is

P
2> pW,
El P41
G= p -3 (6)
Py W,
p=1

Table 1 summarizes the behaviour of the heuristics, considering
the Gini coefficient (G) for the samples (compared to a blind
distribution of the workload (HR column)). Clearly, this table
shows that heuristic H3 is, at least, better than heuristics H1 and H2
in an order of magnitude, and that a random workload assignment
(HR) is at least two orders of magnitude worse than H3 and one for
H1and H2. From the datain Table 1, can be concluded that heuristic
H3 presents the best results, being able to balance the workload
almost perfectly.

5. Experimental results

For the evaluation of the implementations of Algorithm 1 to
solve the perishable inventory control problem, a Bullx cluster
composed of eight nodes with a total of 128 cores has been
used. In particular, each node contains two Intel Xeon E5 2650
and a total of 16 cores. The eight nodes are interconnected by a
QDR/FDR InfiniBand port embedded on the motherboard. Four of
the nodes have two GPUs (total of 2 x 4 NVIDIA Tesla M2070).
The main characteristics of the GPUs are described in Table 2. The
experiments have been compiled with NVIDIA CUDA (6.5 version),
gcc compiler (4.8.1 version) with -02 as the optimization option
and OpenMPI as the MPI library.

A. Gutierrez-Alcoba et al. /]. Parallel Distrib. Comput. 104 (2017) 12-18 17

Table 1
Gini coefficient in 10~ of the workload distribution of heuristics H1, H2 and H3
versus a random allocation HR. P = 8, 16, 32, 64, weights w; from I, I'; and
uniform distribution, A is an empirical distribution.
P H1 H2 H3 HR
8 130 480 12 3,700
r 16 250 1200 52 7,600
1 32 580 2000 140 13,000
64 3200 3900 1500 21,000
8 690 1000 19 23,000
r 16 1200 2100 19 39,000
2 32 3300 4100 78 61,000
64 8000 7600 100 79,000
8 130 750 7.4 12,000
U 16 180 1400 8.6 18,000
32 220 2400 39 26,000
64 370 4100 54 40,000
8 43 190 30 3,200
A 16 220 460 230 4,500
32 300 1000 320 7,100
64 550 2000 380 9,800
Table 2
Characteristics of the GPUs considered for the evaluation.
Tesla M2070
Peak performance (double prec.) (GFLOPs) 515
Peak performance (simple prec.) (GFLOPs) 1030
Device memory (GB) 5.24
Clock rate (GHz) 1.2
Memory bandwidth (GBytes/sec) 150
Multiprocessors 14
CUDA cores 448
Compute Capability 2
DRAM TYPE GDDR5
10000

1000 '\\

=

"

[

£ \.\

-

s -1 thread

§ 100 ~ -= 2 threads

= 4 threads
-~ 8 threads
-~ 16 threads

10
1 2 4 8

Number of MPI processes

Fig. 3. Executions time, in seconds, of the MPI-PTHREADS implementation using
H3 heuristic.

In order to test the parallel implementations, an inventory con-
trol problem of perishable products basedonT = 15andJ = 3 has
been considered. It comprises a total of L = 5768 feasible timing
vectors Y. For Monte-Carlo simulation, N = 200000 samples are
used in Algorithm 3.

Fig. 3 illustrates the values of the execution time for the MPI-
PTHREADS implementation using 1, 2, 4, 8 and 16 threads and 1,
2, 4 and 8 MPI processes. A maximum of eight nodes has been
considered. At every node, only one MPI process is executed and
the number of Pthreads launched per node varies from 1 to 16
(one thread per physical core). The number of cores P in which
the heuristic balances the workload associated to L feasible timing
vectors Y of the problem is equal to the number of MPI processes
x the number of threads.

Fig. 4 shows the speed up of the MPI-PTHREADS implementa-
tion using H3 ranging from 1.7 for the version with a single MPI

100
90
80
70 Speed Up for 2 threads
H Speed Up for 4 threads
2 60
_35 H Speed Up for 8 threads
o 0 g Speed Up for 16 threads
%
w 40
30
20
10 I
0

1 2 4 8
Number of MPI processes

Fig. 4. Speed Up of MPI-PTHREADS implementation versus the sequential code,
considering H3 heuristic.

Table 3

Execution time, (in seconds), of the multi-GPU version. Total: total execution
runtime; GPU (s): runtime (in seconds) of the flossGPU function; % GPU: percentage
of the total execution time devoted to Monte-Carlo function (flossGPU function)
using GPU computing; AF: acceleration factor of the implementation 1 GPU (1 MP],
1 thread) versus the 2 GPU, 4 GPU, 6 GPU, and 8 GPU versions.

Total (s) GPU (s) % GPU AF
1GPU (1 MP], 1 thread) 185.91 56.38 30.33 -
2 GPU (1 MP], 2 threads) 93.50 28.32 30.29 1.99
4 GPU (2 MPJ, 2 threads) 44.69 14.18 31.74 4.16
6 GPU (3 MP], 2 threads) 33.05 9.45 28.59 5.63
8 GPU (4 MP], 2 threads) 24.07 7.07 29.39 7.72

process with 2 threads to 87.5 for 8 MPI processes with 16 threads
each. The performance increases with the number of MPI pro-
cesses. So, the best results in terms of performance are obtained
for 8 MPI (8 nodes). The Y-axis of the figure highlights how the
number of threads in a MPI process affects the total performance
of the algorithm. To be more precise, for the same number of MPI
processes, duplication of the number of threads (and cores) offers
an acceleration factor of nearly 2.

Table 3 shows the executions time, (in seconds), of the multi-
GPU version using 1, 2, 4 and 8 GPUs. Notice that the information
in brackets in the first column identifies the mapping on the
cluster of each version. For instance, 6 GPU (3 MPI, 2 threads) is
mapped using 3 MPI processes and 2 threads. Moreover, every
thread is associated to one core and one GPU device. It can be
observed that the acceleration factor ranges from 1.99x and 7.72 x
for 2 GPU and 8 GPU, respectively. Therefore, the speed up is
approximately linear. Column “% GPU” represents the percentage
of the total execution time devoted to Monte-Carlo function
(flossGPU function) using GPU computing, and it can be observed
that it is mostly equal to one third of the total runtime.

Comparing results in Fig. 3 (MPI-PTHREADS implementation)
with data in Table 3 (multi-GPU version), it can be observed that
the runtime when 1 MPI and 1 thread are considered for H3
(1941.46 s) is much higher (10 x approximately) than the runtime
for 1 MPI, 1 thread and 1 GPU (185.91 s). This case illustrates
the power of the GPU computation to accelerate this kind of
problems. Moreover, focusing our attention on using 4 MPI, 2
threads and 8 GPUs of Table 3, the total runtime (24.07 s) is
very similar to the total runtime for 8 MPI and 16 threads of the
MPI-PTHREADS version (22.19 s). Therefore, in this work, the total
runtime of the optimization algorithm for a perishable inventory
control problem has been accelerated by means of two parallel
implementations MPI-PTHREADS and multi-GPU. The results are
similar for the configurations with the highest number of nodes,
threads and GPUs considered; i.e. for 8 MPI and 16 threads (for the
MPI-PTHREADS version) and for 4 MPI, 2 threads and 8 GPU (for
the multi-GPU version).

18 A. Gutierrez-Alcoba et al. /]. Parallel Distrib. Comput. 104 (2017) 12-18

6. Conclusions

In this paper, two parallel implementations of an optimiza-
tion algorithm for a perishable inventory control problem have
been studied. A MPI-PTHREADS version designed to exploit the
parallelism in both multi-core and distributed platforms; and a
multi-GPU version which uses GPU computing to accelerate the
most computationally intensive task (Monte-Carlo simulation).
The MPI-PTHREADS parallelization using a static workload bal-
ancing based on the H3 heuristic has shown a good scalability.
The results have shown that MPI-PTHREADS implementation has
a good scalability when increasing both the number of processes
(nodes) and threads (cores). Therefore, using 8 MPI processes and
16 threads, the performance has been increased in a factor of 87
versus the sequential code. Finally, parallelization of the Monte-
Carlo function (GPUfloss function) with 8 GPUs speeds up the run-
ning time with a factor of 81 versus the sequential code. It has been
shown that both parallel implementations, MPI-PTHREADS and
multi-GPU, can considerably accelerate the optimization algorithm
for the perishable inventory control problem studied in this work.

Implemented software for the perishable inventory control on
heterogeneous platforms is freely available through the following
website: https://sites.google.com/site/hpcoptimizationproblems/
inventory-problem.

Acknowledgments

Alejandro Gutierrez-Alcoba is a fellow of the Spanish FPI
programme. This paper has been supported by The Spanish
Ministry (TIN2015-66680) and Junta de Andalucia (P11-TIC-7176),
in part financed by the European Regional Development Fund
(ERDF).

References

[1] C.Blum, A. Roli, Metaheuristics in combinatorial optimization: Overview and
conceptual comparison, ACM Comput. Surv. 35 (3) (2003) 268-308.

[2] A.Burkimsher, I. Bate, L. Indrusiak, Scheduling HPC workflows for responsive-
ness and fairness with networking delays and inaccurate estimates of execu-
tion times, in: F. Wolf, B. Mohr, D. an Mey (Eds.), Euro-Par 2013, in: LNCS, vol.
8097, Springer, Berlin Heidelberg, 2013, pp. 126-137.

[3] D. Butenhof, Programming with POSIX Threads, in: Professional Computing
Series, Addison-Wesley, 1997.

[4] D.G. Feitelson, Workload modeling for performance evaluation, in: Per-
formance Evaluation of Complex Systems: Techniques and Tools, Perfor-
mance 2002, in: Tutorial Lectures, Springer-Verlag, London, UK, UK, 2002,
pp. 114-141.

[5] L. Feng,]. Zhang, W. Tang, Optimal inventory control and pricing of perishable
items without shortages, IEEE Trans. Autom. Sci. Eng. 13 (2) (2016) 918-931.

[6] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman & Co., New York, USA, 1979.

[7] C.Gini, Measurement of inequality of incomes, Econ. J. 31 (2014) 124-126.

[8] A. Gutierrez-Alcoba, E.M.T. Hendrix, I. Garcia, G. Ortega, K.G.]. Pauls-Worm,
R. Haijema, On computing order quantities for perishable inventory control
with non-stationary demand, in: O. Gervasi, et al. (Eds.), ICCSA 2015, Part I,
in: LNCS, vol. 9156, Springer, Cham, 2015, pp. 429-444.

[9] A. Gutierrez-Alcoba, R. Rossi, B. Martin-Barragan, E.M.T. Hendrix, A simple
heuristic for perishable item inventory control under non-stationary stochas-
tic demand, Int. J. Prod. Res. (2016) 1-13. http://dx.doi.org/10.1080/00207543.
2016.1193248.

[10] J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Ap-
proach, Morgan Kaufmann, 2011.

[11] S.-H.Hung, M.-Y. Tsai, B.-Y. Huang, C.-H. Tu, A platform-oblivious approach for
heterogeneous computing: A case study with monte carlo-based simulation
for medical applications, in: Proceedings of 2016 FPGA, ACM, New York, NY,
USA, 2016, pp. 42-47.

[12] A. Kurawarwala, H. Matsuo, Forecasting and inventory management of short
life-cycle products, Oper. Res. 44 (1996) 131-150.

[13] A.Lastovetsky, Heterogeneity in parallel and distributed computing, J. Parallel
Distrib. Comput. 73 (12) (2013) 1523-1524.

[14] P.V. Laxmi, M. Soujanya, Perishable inventory system with service interrup-
tions, retrial demands and negative customers, Appl. Math. Comput. 262
(2015) 102-110.

[15] S.Li,J.Zhang, W. Tang, Joint dynamic pricing and inventory control policy for a
stochastic inventory system with perishable products, Int.]. Prod. Res. 53 (10)
(2015) 2937-2950.

[16] S. Miranda,]. Feldt, F. Pratas, R.A. Mata, N. Roma, P. Tomads, Efficient par-
allelization of perturbative monte carlo QM/MM simulations in heteroge-
neous platforms, Int. J. High Perform. C(2016) 1-13. http://dx.doi.org/10.1177/
1094342016649420.

[17] G.Ortega,]. Lobera, I. Garcia, M. Arroyo, E. Garzén, Parallel resolution of the 3D
Helmbholtz equation based on multi-graphics processing unit clusters, Concurr.
Comput. 27 (13) (2015) 3205-3219.

[18] K.GJ. Pauls-Worm, E.M.T. Hendrix, A. Gutierrez-Alcoba, R. Haijema, Order
quantities for perishable inventory control with non-stationary demand and
a fill rate constraint, Int. J. Prod. Econ. (2015) 1-9. http://dx.doi.org/10.1016/j.
ijpe.2015.10.009.

[19] Z. Ren,]. Wan, W. Shi, X. Xu, M. Zhou, Workload analysis, implications, and
optimization on a production hadoop cluster: a case study on taobao, IEEE
Trans. Serv. Comput. 7 (2) (2014) 307-321.

[20] R. Rossi, S.A. Tarim, S. Prestwich, B. Hnich, Piecewise linear lower and upper
bounds for the standard normal first order loss function, Appl. Math. Comput.
231(2014) 489-502.

[21] S.K.D. Schrijver, E.-H. Aghezzaf, H. Vanmaele, Double precision rational
approximation algorithm for the inverse standard normal first order loss
function, Appl. Math. Comput. 219 (3) (2012) 1375-1382.

[22] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI-The Complete
Reference, Volume 1: The MPI Core, MIT Press, Cambridge, MA, USA, 1998.

[23] S. Tabik, A. Villegas, E.L. Zapata, L.F. Romero, Optimal tilt and orientation
maps: a multi-algorithm approach for heterogeneous multicore-GPU systems,
J. Supercomput. 66 (1) (2013) 135-147.

[24] G.R. Waissi, D.F. Rossin, A sigmoid approximation of the standard normal
integral, Appl. Math. Comput. 77 (1) (1996) 91-95.

Alejandro Gutierrez-Alcoba gained both an M.Sc. in
Mathematics and an M.Sc. in Computer Science in 2011
from the University of Malaga (Spain). In 2014, he began
his Ph.D. at the department of Computer Architecture at
the University of Malaga. He is a member of the TIC-
146 Supercomputing-Algorithms research group of the
University of Almeria. His research focuses on the use
of high performance computing (HPC) techniques for
dynamic Global Optimization problems.

Gloria Ortega (https://sites.google.com/site/gloriaortegal
opez/ received the Bachelor’s degree in computer science
and the M.S. and Ph.D. degrees from the University of
Almeria (Spain), in 2009, 2010, and 2014, respectively.
From 2009, she has been working as a member of the
TIC-146 Supercomputing-Algorithms research group. Cur-
rently, she has a Post-doctoral fellowship at the Informat-
ics Department and her current research work is focused
on High Performance Computing and Optimization. Some
of her research interests include the study of strategies for
load balancing the workload on heterogeneous systems
and the parallelization of optimization problems.

Eligius M.T. Hendrix (https://sites.google.com/site/eligiu
shendrix/) is a European researcher and professor with
30 years of experience in mathematical modeling and
optimization questions. His work involved working with
Master and Ph.D. students on a wide variety of practical
problems in environmental and food science. His research
is on the question how to use the mathematical structure
of an optimization application in order to derive specific
solution methods and algorithms. Recently, more focus
is on how to adapt algorithms such that they can
exploit modern computer structures. His affiliation is with
Wageningen University and the last eight years at the Universidad de Mélaga due
to a scholarship. He is active in organizing workshops and has published over 60
journal articles on a wide variety of mathematical analysis in environmental and
logistical questions.

Inmaculada Garcia received a B.Sc. degree in physics in
1977 from the Complutense University of Madrid, Spain,
and a Ph.D. degree in 1986 from the University of Santiago
de Compostela, Spain. From 1977 to 1987, she was an
assistant professor, associate professor during 1987-1997,
between 1997 and 2010 full professor at the University
of Almeria and since 2010 full professor at the University
¥ of Malaga. She was head of the Department of Computer
© Architecture and Electronics at the University of Almeria
5 ‘\“ for more than 12 years. During 1994-1995, she was
SN 3 visiting researcher at the University of Pennsylvania,
Philadelphia. She has been the head of the Supercomputing-Algorithms research
group from 1995 until 2010. Her research interest lies in the field of high
performance computing applications and parallel algorithms for irregular problems
related to image processing, global optimization, and matrix computation.

https://sites.google.com/site/hpcoptimizationproblems/inventory-problem
https://sites.google.com/site/hpcoptimizationproblems/inventory-problem
https://sites.google.com/site/hpcoptimizationproblems/inventory-problem
https://sites.google.com/site/hpcoptimizationproblems/inventory-problem
https://sites.google.com/site/hpcoptimizationproblems/inventory-problem
https://sites.google.com/site/hpcoptimizationproblems/inventory-problem
https://sites.google.com/site/hpcoptimizationproblems/inventory-problem
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref1
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref2
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref3
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref4
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref5
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref6
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref7
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref8
http://dx.doi.org/10.1080/00207543.2016.1193248
http://dx.doi.org/10.1080/00207543.2016.1193248
http://dx.doi.org/10.1080/00207543.2016.1193248
http://dx.doi.org/10.1080/00207543.2016.1193248
http://dx.doi.org/10.1080/00207543.2016.1193248
http://dx.doi.org/10.1080/00207543.2016.1193248
http://dx.doi.org/10.1080/00207543.2016.1193248
http://dx.doi.org/10.1080/00207543.2016.1193248
http://dx.doi.org/10.1080/00207543.2016.1193248
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref10
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref11
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref12
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref13
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref14
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref15
http://dx.doi.org/10.1177/1094342016649420
http://dx.doi.org/10.1177/1094342016649420
http://dx.doi.org/10.1177/1094342016649420
http://dx.doi.org/10.1177/1094342016649420
http://dx.doi.org/10.1177/1094342016649420
http://dx.doi.org/10.1177/1094342016649420
http://dx.doi.org/10.1177/1094342016649420
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref17
http://dx.doi.org/10.1016/j.ijpe.2015.10.009
http://dx.doi.org/10.1016/j.ijpe.2015.10.009
http://dx.doi.org/10.1016/j.ijpe.2015.10.009
http://dx.doi.org/10.1016/j.ijpe.2015.10.009
http://dx.doi.org/10.1016/j.ijpe.2015.10.009
http://dx.doi.org/10.1016/j.ijpe.2015.10.009
http://dx.doi.org/10.1016/j.ijpe.2015.10.009
http://dx.doi.org/10.1016/j.ijpe.2015.10.009
http://dx.doi.org/10.1016/j.ijpe.2015.10.009
http://dx.doi.org/10.1016/j.ijpe.2015.10.009
http://dx.doi.org/10.1016/j.ijpe.2015.10.009
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref19
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref20
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref21
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref22
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref23
http://refhub.elsevier.com/S0743-7315(16)30207-6/sbref24
https://sites.google.com/site/gloriaortegalopez/
https://sites.google.com/site/gloriaortegalopez/
https://sites.google.com/site/eligiushendrix/
https://sites.google.com/site/eligiushendrix/

	Accelerating an algorithm for perishable inventory control on heterogeneous platforms
	Introduction
	Description of the model
	Sequential algorithm
	Parallel implementations
	MPI-PTHREADS implementation
	Multi-GPU implementation
	Heuristics for the Bin-Packing problem

	Experimental results
	Conclusions
	Acknowledgments
	References

