Java_Advanced

Advanced Concepts

Object Orientation

Data Structures
Multithreaded programming
Serialization mechanisms
Generics

Collections Framework

OO Java Concepts

* Inheritance

* Polymorphism
* Abstraction

* Encapsulation
* Overriding

OO-Inheritance

IS-A Relationship

HAS-A Relationship
Extending a Class
Implementing an Interface

Polymorphism

* The ability of an object reference to be
used as if it referred to an object with
different forms

class Rectangle extends Polygon implements
Comparable

* An object whose dynamic type is
Rectangle can behave as all of the

following types: Rectangle, Polygon,
Comparable, Object.

Abstraction

* Asimplified representation of something that
is potentially quite complex

* Object-oriented design often involves finding
the right level of abstraction at which to work
when modeling real-life objects

 |f the level is too high, then not enough detalil
will be captured. If the level is too low, then a
program could be more complex and difficult
to create and understand than it needs to be

Encapsulation

Safeguarding the state of an objects by defining
its attributes as private and channeling access to
them through accessor and mutator methods.

Method Overriding

A method defined in a super class may be
overridden by a method of the same name
defined in a sub class

The two methods must have the same name and
number and types of formal arguments

Any checked exception thrown by the sub class
version must match the type of one thrown by
the super class version, or be a sub class of such
an exception

Check: overriding for breadth, overriding for
chaining and overriding for restriction

Method Overriding - Rules

The argument list should be exactly the same as that of the overridden method.

The return type should be the same or a subtype of the return type declared in the original overridden
method in the superclass.

The access level cannot be more restrictive than the overridden method's access level.
Instance methods can be overridden only if they are inherited by the subclass.

A method declared final cannot be overridden.

A method declared static cannot be overridden but can be re-declared.

If a method cannot be inherited, then it cannot be overridden.

A subclass within the same package as the instance's superclass can override any superclass method that is
not declared private or final.

A subclass in a different package can only override the non-final methods declared public or protected.

Constructors cannot be overridden

Method Overloading

1. Change the number of method parameters
2. Change the parameter types

2uxva Aaon:
1. Overload return type
2. Change parameter name

Method Header

* The header of a method, consisting of the
method name, its result type, formal
arguments and any exceptions thrown

* Also known as a method signature

Inheritance example

public class Animal{

}

public class Mammal extends Animal{

}

public class Coldblooded extends Animal{

}

public class Egglaying extends Animal{

}

public class Cat extends Mammal{

}

Q’ DA\Dropbox\papei\postgraduate\protal\anaptiksi efarmogwn gia kinita tileﬁﬂ...é@g

File Edit Search View Encoding Language Settings Macro Run Plugins Window 2 X
o ER LR dRC et BRI IED
= child java E!i|
1 class Parent
2 B{
3 public woid pl()
4 H {
5 System.out.println("Parent method") ;
] 6 L }
|]
|| 8 [Hpublic class Child extends Parent {
| g public woid cl1()
il 10 B {
i 11 System.out.println("Child method") ;
12 }
| 13 public static void main{String[] args)
il 12 B {
15 Parent pob] = new Parent() ;
16 Child cobj = new Child();
17 cobj.cl();
18 cob].pl();
19 GrandcChild gob] = new GrandChild() ;
20 System.out.println(cobj instanceof Child);
21 System.out.println{gobj instancecf Child) ;
22 System.out.println (gobj instanceof Parend);
23 r }
24 -}
25 Helass GrandChild extends Child {
26 public wvoid gl()
27 H {
28 //do something
ZONS - }
S]
'@gth:ﬁrﬂr? lines:3(Ln:22 Col:50 Sel:0|0 Dos\Windows ANSIas UTF-8 INS .

CA\Windows\system32\cmd.exe

Microsoft Windows [Uersion 6.1.7601]

Copyright (c¢) 2009 Microsoft Corporation.

C:\Users\talepis>d:

D:\>cd myjavaprogs

D:\myjavaprogs>javac Child. java

D:\myjavaprogs>java Child
Child method

Parent method

true

true

true

D:\myjavaprogs>

All rights reserved.

Composition-Aggregation

University faculty Department members Professor

1 0..20 0..5

Multiple Inheritance? No
Diamond Problem

class A{
void show() { }

}

extends T extends

class B { class_b {
void show() {} void show(){ }

} }

extends ______--—--“"'__:extends

class D% o
void show() { }& ambiguity
} problem

Basic Data Stuctures

Enumeration
BitSet
Vector

Stack
Dictionary
Hashtable
Properties

Collection Classes

1 AbstractCollection
Implements most of the Collection interface.

2 AbstractlList
Extends AbstractCollection and implements most of the List interface.

3 AbstractSequentialList
Extends AbstractList for use by a collection that uses sequential rather than random access of its elements.

4 LinkedList
Implements a linked list by extending AbstractSequentiallList.

5 Arraylist

Implements a dynamic array by extending AbstractList.
6 AbstractSet

Extends AbstractCollection and implements most of the Set interface.
7 HashSet

Extends AbstractSet for use with a hash table.

8 LinkedHashSet

Extends HashSet to allow insertion-orderiterations.

9 TreeSet

Implements a set stored in a tree. Extends AbstractSet.
10 AbstractMap

Implements most of the Map interface.

11 HashMap

Extends AbstractMap to use a hash table.

Generics

Generics enable types (classes and
interfaces) to be parameters when
defining classes, interfaces and methods

Generic Methods and Classes

* Java Generic methods and generic classes enable
programmers to specify, with a single method
declaration, a set of related methods or, with a

single class declaration, a set of related types,
respectively

* Using Java Generics we might write a generic
method for sorting an array of objects, then
invoke the generic method with Integer arrays,

Double arrays, String arrays and so on, to sort the
array elements

Hpublic class Box<T> {
private T t;
l public wvoid set(T t) {

thi=s.t = t;

l public T get() {
return t;

E public static vold main(Stringl[] args) {
Box<Integer> integerBox = new Box<Integer>() ;
Box<String> stringBox = new Box<String>():

integerBox.set (new Integer(10));

System.out.println("Integer Value : " +integerBox.get());
System.out.println("String Value : " +stringBox.get()):

&

M C\Windows\system32\cmd.exe
D:\myjavaprogs>javac Box.java
D:\myjavaprogs>java Box

Integer Ualue : 10
String VUalue : Hello World

D:\myjavaprogs>

|::|[]|-E§-Jw

Java - Serialization

An object represented as a sequence of bytes
that includes the object's data as well as
information about the object's type and the
types of data stored in the object

Object serialization to a file (*.ser)

Object deserialization from a file (object
recreated in memory)

Platform independence!!

Enumeration Interface

The Enumeration interface defines the
methods by which you can enumerate the
elements in a collection of objects

import java.util.Vector;
import java.util.Enumeration;

Hpublic class EnumerationTest {

= public static wvoid main(String args[]) {
Enumeration days;

Vector dayNames = new Vector();
dayNames.add (" Sunday™) ;

dayNames.add ("Monday") ;

dayNames.add ("Tuesday") ;

dayNames.add ("Wednesday") ;
dayNames.add("Thursday") ;
dayNames.add ("Friday") ;

dayNames.add ("Saturday"™) ;

days = dayNames.elements () ;

= while (days.hasMoreElements()) {
System.out.println(days.nextElement (}) ;

-

mA C\Windows\system32\cmd.exe

D:\myjavaprogs>javac EnumerationTest.java
Note: EnumerationTest.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

D:\myjavaprogs>java EnumerationTest
Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

D:\myjavaprogs>

|=||§||ﬂ?_‘

Multithreading — Thread Life Cycle

program starts thread using start()

runnable
unlock
signal
singalAll

thread completes

await await interval
lock sleep expires

timed ;

Java Threads

Extend Thread Class

Thread Priorities
— (MIN_PRIORITY<NORMAL_PRIORITY<MAX_PRIORITY)

Thread Synchronization
Interthread Communication
Thread Deadlock

