
Android
Java Threads



What is a thread?

• A thread is an independent path of execution 
through program code

• Threads can be managed independently by a 
scheduler, which is typically a part of the 
operating system

• Multiple threads can exist within the same 
process and share resources such as memory

• On a multiprocessor or multi-core system, 
threads can be executed in a true concurrent 
manner, with every processor or core executing a 
separate thread simultaneously



Multithreading Advantages

• Responsiveness

• Faster execution

• Lower resource consumption

• Better system utilization

• Parallelization



CREATING AND USING THREADS



Extending the Thread class



Using our thread





Example 1/2



Example 2/2





Implementing the Runnable Interface



Using it





Through an anonymous class





Through anonymous inner class that 
implements runnable interface





Pausing Thread Execution with Sleep

• Thread.sleep causes the current thread to 
suspend execution for a specified period

• This is an efficient means of making processor 
time available to the other threads of an 
application or other applications that might be 
running on a computer system

• Two overloaded versions of sleep are 
provided: one that specifies the sleep time to 
the millisecond and one that specifies the 
sleep time to the nanosecond



Thread.sleep()

• Thread.sleep can throw an 
InterruptedException which is a checked 
exception

• All checked exceptions must either be caught 
and handled or else you must declare that 
your method can throw it

• Not declaring a checked exception that your 
method can throw is a compile error



Thread.sleep and 
InterruptedException



Joining Threads

• Waiting for threads to finish their work is quite 
useful in many cases

• Because the while loop/isAlive() method/sleep() 
method technique proves useful, it is packaged 
into some methods: 

– join(), join(long millis), and join(long millis, int nanos). 



join()

• The current thread calls join(), via another 
thread's thread object reference when it 
wants to wait for that other thread to 
terminate

• The current thread calls join(long millis) or 
join(long millis, int nanos) when it wants to 
either wait for that other thread to terminate 
or wait until a combination of millis
millseconds and nanos nanoseconds passes



User Threads Vs Daemon Threads

• A user thread performs important work for the 
program's user, that must finish before the 
application terminates

• A daemon thread performs “housekeeping” and 
other background tasks that probably do not 
contribute to the application's main work but 
are necessary for the application to continue its 
main work

• Unlike user threads, daemon threads do not 
need to finish before the application terminates


