
ANDROID 
DIALOGS AND NOTIFICATIONS

Efthimios Alepis



Dialogs

■ A dialog is a small window that prompts the user to make a decision or enter 

additional information

■ A dialog does not fill the screen and is normally used for modal events that require 

users to take an action before they can proceed

■ Dialogs contain text and UI controls. They retain focus until dismissed or a required 

action has been taken. Use dialogs sparingly because they are interruptive.



Confirming vs Acknowledging

■ In some situations, when a user invokes an action in your app, it's a good idea 

to confirm or acknowledge that action through text

■ Confirming is asking the user to verify that they truly want to proceed with an action 

they just invoked

■ Acknowledging is displaying text to let the user know that the action they just 

invoked has been completed

■ Confirming -> Dialogs

■ Acknowledging -> Toasts





Dialog Class

■ The Dialog class is the base class for dialogs, but you should avoid instantiating 

Dialog directly. Instead, use one of the following subclasses:

■ Direct Subclasses

– AlertDialog, AppCompatDialog, CharacterPickerDialog, Presentation

■ Indirect Subclasses

– AlertDialog, BottomSheetDialog, DatePickerDialog, MediaRouteChooserDialog, 

MediaRouteControllerDialog, ProgressDialog, TimePickerDialog



AlertDialog

Alerts are urgent interruptions, requiring acknowledgement, 

that inform the user about a situation.



DatePickerDialog



TimePickerDialog



Creating a Date Picker

■ Creating a DatePickerDialog is just like creating a TimePickerDialog. The only 

difference is the dialog you create for the fragment.

1. Extend DialogFragment for a date picker

2. Define the onCreateDialog() method to return an instance of DatePickerDialog

3. Implement the DatePickerDialog.OnDateSetListener interface to receive a callback 

when the user sets the date

4. Once you've defined a DialogFragment, you can display the date picker by creating 

an instance of the DialogFragment and calling show()



Example



The Alert Dialog class

■ The AlertDialog class allows you to build a variety of dialog designs and is often the 

only dialog class you'll need

■ There are three regions of an alert dialog:

– Title. This is optional and should be used only when the content area is 

occupied by a detailed message, a list, or custom layout.

– Content area. This can display a message, a list, or other custom layout.

– Action buttons. There should be no more than three action buttons in a dialog.



Creating an Alert Dialog

1. Instantiate an AlertDialog.Builder with its constructor

AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

2. Chain together various setter methods to set the dialog characteristics

builder.setMessage(R.string.dialog_message).setTitle(R.string.dialog_title);

3. Get the AlertDialog from create()

AlertDialog dialog = builder.create();

4. Show the created dialog. 

dialog.show();

5. Add Buttons? -> Through builder object. Options: “Positive”, “Negative” and “Neutral” 
buttons



Example



Notifications

■ A notification is a message you can display to the user outside of your application's 

normal UI

■ When you tell the system to issue a notification, it first appears as an icon in 

the notification area

■ To see the details of the notification, the user opens the notification drawer

■ Both the notification area and the notification drawer are system-controlled areas 

that the user can view at any time





Anatomy of a notification

■ Sending application's notification 

icon or the sender's photo

■ Notification title and message

■ A timestamp

■ A secondary icon to identify the 

sending application when the 

sender's image is shown for the 

main icon



How notifications may be noticed

■ Showing a status bar icon

■ Appearing on the lock screen

■ Pulsing the device's LED

■ Playing a sound or vibrating

■ Peeking onto the current screen



Notification 
Templates

■ Standard

■ Big text

■ Big picture

■ Progress

■ Media



Notification Priority

■ Optionally, you can set the priority of a notification

■ The priority acts as a hint to the device UI about how the notification should be 

displayed

■ To set a notification's priority, call NotificationCompat.Builder.setPriority() and pass 

in one of the NotificationCompat priority constants

■ There are five priority levels, ranging from PRIORITY_MIN (-2) to PRIORITY_MAX (2); 

if not set, the priority defaults to PRIORITY_DEFAULT (0)



Priority Use

MAX Use for critical and urgent notifications that alert the user to a condition that is time-critical or 

needs to be resolved before they can continue with a particular task.

HIGH Use high priority notifications primarily for important communication, such as message or 

chat events with content that is particularly interesting for the user.

DEFAULT The default priority. Keep all notifications that don't fall into any of the other categories at this 

priority level.

LOW Use for notifications that you still want the user to be informed about, but that rate low in 

urgency.

MIN Contextual/background information (e.g. weather information, contextual location 

information). Minimum priority notifications will not show in the status bar. The user will only 

discover them when they expand the notification tray.





When to display notifications

■ There are two basic rules:

– Time sensitive events

– Events involve other people



When not to display notifications

■ Avoid notifying the user of information that is not directed specifically at them

■ Don't create a notification if the relevant new information is currently on screen

■ Don't interrupt the user for low level technical operations, like saving or syncing 

information

■ Don't interrupt the user to inform them of an error if it is possible for the application 

to quickly recover from the error

■ Don't create notifications that have no true notification content and merely advertise 

your app

■ Don't create superfluous notifications just to get your brand in front of users





Creating a Notification

■ You specify the UI information and actions for a notification in a 

NotificationCompat.Builder object

■ To create the notification itself, you call NotificationCompat.Builder.build(), which 

returns a Notification object containing your specifications

■ To issue the notification, you pass the Notification object to the system by calling 

NotificationManager.notify()



Required notification contents

■ A Notification object must contain the following:

– A small icon, set by setSmallIcon()

– A title, set by setContentTitle()

– Detail text, set by setContentText()

■ Optional: 

– Define the Notification's Action



Example



Replying to notifications

■ Starting in Android 7.0 (API level 24), users can respond directly to text messages or 

update task lists from within the notification dialog

■ The inline reply action appears as an additional button displayed in the notification

■ When a user replies via keyboard, the system attaches the text response to the 

intent you had specified for the notification action and sends the intent to your 

handheld app


