

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΜΣ ΚΥΒΕΡΝΟΑΣΦΑΛΕΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΔΕΔΟΜΕΝΩΝ

MSC CYBERSECURITY
AND DATA SCIENCE

DEPT OF INFORMATICS
UNIVERSITY OF PIRAEUS

Track:
Infrastructure and Systems
Security and Reliability (ISSR)

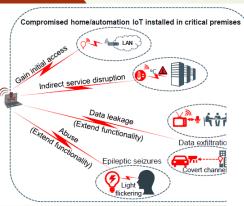
1st semester

Courses

- CDS103: Security Architecture Design
- CDS107: Data Analytics and Machine Learning
- CDS106: Dependable Systems and Critical Infrastructures Design
- CDS104: Secure Applications for the Internet of Things
- CDS105: Embedded Systems

CDS106: Dependable Systems and Critical Infrastructures Design

Syllabus:


- Fundamentals concepts of dependability (reliability, availability, safety, security)
- Dependability standards
- Fault models, security threats and system failures
- Introduction to Critical Systems and Infrastructures (Standards, Methods, Regulation)
- Dependency analysis for Critical Infrastructures (risk/threat propagation, cascading attacks)
- Resilience in Critical Infrastructures (resilience-by-design, redundancy, restoration)
- Hardware and Software fault tolerance (basic concepts)
- Reliability evaluation (FMEA, radiation experiments, fault injection)

Lab hours:

- Case studies and real-world examples
 - Critical Infrastructures attacks and defenses, risk assessment tools
 - FMEA on a critical system

Instructors:

Prof. Panagiotis Kotzanikolaou, Dr. Dimitrios Agiakatsikas, Prof. Mihalis Psarakis

CDS104: Secure Applications for the Internet of Things

Syllabus:

- Introduction to the Internet of Things (IoT)
- Microcontroller architectures for IoT
- loT connectivity aspects
- Design approaches for secure IoT
- Hardware support for IoT security
- Hardware Security Modules
- Secure and cryptographic implementations for IoT

Lab hours:

STM32, ST IoT node (B-L475E-IOT01A), STM CUBE IDE

Instructors:

Prof. Athanasios Papadimitriou

CDS105: Embedded Systems

Syllabus:

- Introduction to Embedded Systems.
- Embedded applications, specifications and requirements.
- Embedded computing platforms (CPUs, ASIC, FPGA).
- Design methodology with FPGAs. Introduction to hardware description languages (HDL) and high-level synthesis (HLS)
- Case study: Xilinx Zynq-7000 System-on-Chip

Lab hours:

- Design, simulation and verification of embedded systems in FPGAs.
 - Use of automated design tools (Vivado) and Xilinx FPGA development boards (Zybo)
- Project: Embedded application (software + hardware) on Zybo board.

Instructor:

Prof. Mihalis Psarakis

Weekly Planner

week 3: Oct. 11-15, 2021

	Monday	Tuesday	Wednesday	Thursday	Friday
Weeks 3 to 7	CDS106: Dependable Systems and Critical Infrastructures Design		CDS103: Data Analytics and Machine Learning	CDS109: Security Architecture Design	CDS104: Secure Applications for the Internet of Things
Weeks 8 to 12					CDS105: Embedded Systems