
Java 8 Stream
API
Efthimios Alepis

Introduction

• Package java.util.stream provides classes to support functional-style
operations on streams of elements, such as map-reduce
transformations on collections

• The key abstraction introduced in this package is stream

• The classes Stream, IntStream, LongStream, and DoubleStream are
streams over objects and the primitive int, long and double types

• Streams are Monads, thus playing a big part in bringing functional
programming to Java

Streams Vs Collections

• No storage. A stream is not a data structure that stores elements

• Functional in nature. An operation on a stream produces a result, but does not
modify its source

• Laziness-seeking. Many stream operations, such as filtering, mapping, or
duplicate removal, can be implemented lazily, exposing opportunities for
optimization

• Possibly unbounded. While collections have a finite size, streams need not.
Short-circuiting operations such as limit(n) or findFirst() can allow computations
on infinite streams to complete in finite time

• Consumable. The elements of a stream are only visited once during the life of a
stream. Like an Iterator, a new stream must be generated to revisit the same
elements of the source

Obtaining a Stream

• From a Collection via the stream() and parallelStream() methods

• From an array via Arrays.stream(Object[])

• From static factory methods on the stream classes, such as
Stream.of(Object[]), IntStream.range(int, int) or
Stream.iterate(Object, UnaryOperator)

• The lines of a file can be obtained from BufferedReader.lines()

• Streams of file paths can be obtained from methods in Files

• Streams of random numbers can be obtained from Random.ints()

Stream operations and pipelines

• Stream operations are divided into intermediate and terminal operations,
and are combined to form stream pipelines. A stream pipeline consists of
a source, followed by zero or more intermediate operations such as
Stream.filter or Stream.map, and a terminal operation such as
Stream.forEach or Stream.reduce

• Intermediate operations return a new stream. They are always lazy:
executing an intermediate operation such as filter() does not actually
perform any filtering, but instead creates a new stream that, when
traversed, contains the elements of the initial stream that match the
given predicate

• Terminal operations, such as Stream.forEach or IntStream.sum, may
traverse the stream to produce a result or a side-effect. After the terminal
operation is performed, the stream pipeline is considered consumed, and
can no longer be used

Stream Parallelism

• Processing elements with an explicit for-loop is inherently serial

• All streams operations can execute either in serial or in parallel

• The stream implementations in the JDK create serial streams unless
parallelism is explicitly requested

• For example, Collection has methods Collection.stream() and
Collection.parallelStream(), which produce sequential and parallel
streams respectively

Simple Example

import java.util.Arrays;

import java.util.List;

public class Main {

public static void main(String[] args) {

List<String> myList =

Arrays.asList("Manolis", "Efthimios", "Maria", "Christina",

"Marios", "Manos", "Dimitris", "Costas");

myList .stream()

.filter(s -> s.startsWith("M"))

.map(String::toUpperCase)

.sorted()

.forEach(System.out::println);

}

}

import java.util.Arrays;

public class Demo2 {

public static void main(String[] args) {

Arrays.stream(new int[] {1, 2, 3, 4})

.map(n -> 2 * n + 1)

.average()

.ifPresent(System.out::println);

}

}

Stream Creation

Empty Stream

Stream<String> streamEmpty = Stream.empty();

• The empty() method should be used in case of a creation of an
empty stream

• Its often the case that the empty() method is used upon creation to
avoid returning null for streams with no element:

public Stream<String> streamOf(List<String> list) {

return list == null || list.isEmpty() ? Stream.empty() : list.stream();

}

Stream of Collection

Collection<String> collection = Arrays.asList("a", "b", "c");

Stream<String> streamOfCollection = collection.stream();

Stream of Array

String[] arr = new String[]{"a", "b", "c"};

Stream<String> streamOfArrayFull = Arrays.stream(arr);

Stream<String> streamOfArrayPart = Arrays.stream(arr, 1, 3);

Stream.builder()

Stream<String> streamBuilder =

Stream.<String>builder().add("a").add("b").add("c").build();

 When builder is used the desired type should be additionally specified in the right part
of the statement, otherwise the build() method will create an instance of the
Stream<Object>

Stream of String

Stream<String> streamOfString =

Pattern.compile(", ").splitAsStream("a, b, c");

Stream of File

Path path = Paths.get("C:\\file.txt");

Stream<String> streamOfStrings = Files.lines(path);

Stream<String> streamWithCharset =

Files.lines(path, Charset.forName("UTF-8"));

Referencing a Stream

• It is possible to instantiate a stream and to have an accessible
reference to it as long as only intermediate operations were called

• Executing a terminal operation makes a stream inaccessible

Stream<String> stream =

Stream.of("a", "b", "c").filter(element -> element.contains("b"));

Optional<String> anyElement = stream.findAny();

• It is very important to remember that Java 8 streams can’t be
reused

Conclusions

• The Stream API is a powerful but simple to understand set of tools
for processing sequence of elements

• It allows us to reduce a huge amount of boilerplate code, create
more readable programs and improve app’s productivity when used
properly

• Hint: don’t leave instantiated streams unconsumed as that may lead
to memory leaks

