Java 8 Stream
API

Efthimios Alepis

- Package java.util.stream provides classes to support functional-style
operations on streams of elements, such as map-reduce
transformations on collections

- The key abstraction introduced in this package is stream

- The classes Stream, IntStream, LongStream, and DoubleStream are
streams over objects and the primitive int, long and double types

- Streams are Monads, thus playing a big part in bringing functional
programming to Java

Introduction

- No storage. A stream is not a data structure that stores elements

- Functional in nature. An operation on a stream produces a result, but does not
modify its source

- Laziness-seeking. Many stream operations, such as filtering, mapping, or
duplicate removal, can be implemented lazily, exposing opportunities for
optimization

« Possibly unbounded. While collections have a finite size, streams need not.
Short-circuiting operations such as limit(n) or findFirst() can allow computations
on infinite streams to complete in finite time

+ Consumable. The elements of a stream are only visited once during the life of a
stream. Like an Iterator, a new stream must be generated to revisit the same
elements of the source

Streams Vs Collections

» From a Collection via the stream() and parallelStream() methods
- From an array via Arrays.stream(Object[])

- From static factory methods on the stream classes, such as
Stream.of(Object[]), IntStream.range(int, int) or
Stream.iterate(Object, UnaryOperator)

« The lines of a file can be obtained from BufferedReader.lines()
- Streams of file paths can be obtained from methods in Files

« Streams of random numbers can be obtained from Random.ints()

Obtaining a Stream

- Stream operations are divided into intermediate and terminal operations,
and are combined to form stream pipelines. A stream pipeline consists of
a source, followed by zero or more intermediate operations such as
Stream.filter or Stream.map, and a such as
Stream.forEach or Stream.reduce

- Intermediate operations return a new stream. They are always lazy:
executing an intermediate operation such as filter(y does not actually
perform any filtering, but instead creates a new stream that, when
traversed, contains the elements of the initial stream that match the
given predicate

- Terminal operations, such as Stream.forEach or IntStream.sum, may
traverse the stream to produce a result or a side-effect. After the terminal
operation is performed, the stream pipeline is considered consumed, and
can no longer be used

Stream operations and pipelines

- Processing elements with an explicit for-loop is inherently serial
- All streams operations can execute either in serial or in parallel

- The stream implementations in the JDK create serial streams unless
parallelism is explicitly requested

« For example, Collection has methods Collection.stream() and
Collection.parallelStream(), which produce sequential and parallel
streams respectively

Stream Parallelism

import java.util.Arrays;
import java.util.List;

public class Main {
public static void main (String[] args) {
List<String> myList =

Arrays.asList("Manolis", "Efthimios", "Maria", "Christina",
"Marios", "Manos", "Dimitris", "Costas");

myList .stream()
.filter(s -> s.startsWith("M"))
.map (String: :toUpperCase)
.sorted ()
.forEach (System.out: :println);

Bl Command Prompt

C:\Users\talepis\IdeaProjects\Streamsl\out\production\Streamsl:>java Main
MANOLIS

MANOS

MARIA

MARIOS

C:\Users\talepis\IdeaProjects\S5treamsl\out\production\Streamsl>_

import java.util.Arrays;

public class Demo2 {
public static void main (String[] args) {

Arrays.stream(new int[] {1, 2, 3, 4})
.map(n -> 2 * n + 1)
.average ()

.1fPresent (System.out: :println);

Bl Command Prompt — O X

C:\Users\talepis\IdeaProjects\Streamsl\out\production\Streamsl>java Demo2
6.0

C:\Users\talepis\IdeaProjects\Streamsl\out\production\Streamsl>

Stream<String> streamEmpty = Stream.empty();

- The empty() method should be used in case of a creation of an
empty stream

- Its often the case that the empty() method is used upon creation to
avoid returning null for streams with no element:
public Stream<String> streamOf(List<String> list) {

return list == null | | list.isEmpty() ? Stream.empty() : list.stream();

}

Empty Stream

Collection<String> collection = Arrays.asList("a", "b", "c");
Stream<String> streamOfCollection = collection.stream();

Stream of Collection

String[] arr = new String[][{"a", "b", "c"};
Stream<String> streamOfArrayFull = Arrays.stream(arr);
Stream<String> streamOfArrayPart = Arrays.stream(arr, 1, 3);

Stream of Array

Stream<String> streamBuilder =
Stream.<String>builder().add("a").add("b").add("c").build();

v When builder is used the desired type should be additionally specified in the right part
of the statement, otherwise the build() method will create an instance of the
Stream<Object>

Stream.builder()

Stream<String> streamOfString =
Pattern.compile(", ").splitAsStream("a, b, c");

Stream of String

Path path = Paths.get("C:\\file.txt");

Stream<String> streamOfStrings = Files.lines(path);

Stream<String> streamWithCharset =
Files.lines(path, Charset.forName("UTF-8"));

Stream of File

- It is possible to instantiate a stream and to have an accessible
reference to it as long as only intermediate operations were called

- Executing a terminal operation makes a stream inaccessible

Stream<String> stream =
Stream.of("a", "b", "c").filter(element -> element.contains("b"));
Optional<String> anyElement = stream.findAny();

- It is very important to remember that Java 8 streams can’t be
reused

Referencing a Stream

Method

Guarantees unmodifiability

Allows nulls

collect(toList())

No

Yes

collect(toUnmodifiableList())

No

toList()

untitled99 Version control Current File

() Project © Mainjava N |
8, v (Quntitled99 C:\Users\timis\Dropbox\java\intellijprojects\untitled99 import java.util.list; 121~ Y g ‘
> [J.idea import java.util.stream.Stream;
> out
b public class Main {
v [Dsrc

[public static void main(String[] args) {
List<String> list = Stream.of(© "Hello").tolList();
—~ e
© .gitignore System.out.println(list);
(-] untitled99.iml 9

8 g list.add("Unipi");
> [hExternal Libraries }

(C) Main

> =®Scratches and Consoles }

Run Main

@

C:\Usersh\timis\.jdks‘\openjdk-19.68.1\bin\java.exe "-javaagent:C:\Program Files\JetBrains\IntelliJ IDEA 2022.2.3\1lib\idea_rt.jar=59168:C:\Program Files\JetBrair

@ .
|a [Hello]
T

Exception in thread "main" java.lang.UnsupportedOperationException Create breakpoint

== at java.base/java.util.ImmutableCollections.uoe(ImmutableCollections.java:142)

= at java.base/java.util.ImmutableCollections$AbstractImmutableCollection.add(ImmutableCollections. java:147)
>_
= at Main.main(Main.java:8)

|

Process finished with exit code 1

O untitled9 > src > © Main > @ main LF UTF-8 4spaces o

untitled99 Version control

Current File
| ®
() Project © Mainjava 3 |
8o v [Quntitled99 C\Users\timis\Dropbox\java\intellijprojects\untitled99 import java.util.list; X1~ v @ ‘
> [J.idea import java.util.stream.Collectors;
import java.util.stream.Stream;
> out
v [Dsrc .]
. » public class Main {
(C) Main

[= public static void main(String[] args) {
@ .gitignore

List<String> list = Stream.of(t "Hello").collect(Collectors.tolist());
|) untitled99.iml System.out.println(list);

> [hExternal Libraries list.add("Unipi");
> Z®Scratches and Consoles System.ouvt.println(list);
s
| 12 } .
Run Main
6

[Hello]

.. C:\Users\timis\.jdks‘\openjdk-19.08.1\bin\java.exe "-javaagent:C:\Program Files\JetBrains\IntelliJ IDEA 2022.2.3\lib\idea_rt.jar=59177:C:\Program Files\JetBrair
[>]
ﬁ? [Hella, Unipi]

-4 Process finished with exit code ©

1222 LF UTF-8 4spaces G

« The Stream API is a powerful but simple to understand set of tools
for processing sequence of elements

- It allows us to reduce a huge amount of boilerplate code, create
more readable programs and improve app’s productivity when used
properly

« Hint: don’t leave instantiated streams unconsumed as that may lead
to memory leaks

Conclusions

	Slide 1: Java 8 Stream API
	Slide 2: Introduction
	Slide 3: Streams Vs Collections
	Slide 4: Obtaining a Stream
	Slide 5: Stream operations and pipelines
	Slide 6: Stream Parallelism
	Slide 7: Simple Example
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Stream Creation
	Slide 13: Empty Stream
	Slide 14: Stream of Collection
	Slide 15: Stream of Array
	Slide 16: Stream.builder()
	Slide 17: Stream of String
	Slide 18: Stream of File
	Slide 19: Referencing a Stream
	Slide 20: Collecting Streams as Lists
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Conclusions

