
Introduction to Deep Learning

The Rise of Deep Learning

What is Deep Learning?

ARTIFICIAL

INTELLIGENCE
MACHINE LEARNING

DEEP LEARNINGAny technique that enables
computers to mimic

human behavior
Ability to learn without

explicitly being programmed Extract patterns from data using
neural networks

Why Deep Learning and Why Now?

Why Deep Learning?

Hand engineered features are time consuming, brittle and not scalable in practice
Can we learn the underlying features directly from data?

Low Level Features

Lines & Edges Eyes & Nose & Ears Facial Structure

Mid Level Features High Level Features

Why Now?

1952 Stochastic Gradient
Descent

1958 Perceptron
• Learnable Weights

1995 Deep Convolutional NN
• Digit Recognition

1986 Backpropagation
• Multi-Layer Perceptron

1. Big Data
• Larger Datasets
• Easier Collection

& Storage

2. Hardware
• Graphics

Processing Units
(GPUs)

• Massively
Parallelizable

3. Software
• Improved

Techniques
• New Models
• Toolboxes

Neural Networks date back decades, so why the resurgence?

The Perceptron
The structural building block of deep learning

The Perceptron: Forward Propagation

!"

!#

!$ Σ&$

&#

&"
'(= * +

,-"

#
& , ! ,

Non-linear
activation function

Output
Linear combination

of inputs

'(

Inputs Weights Sum Non-Linearity Output

Inputs Weights Sum Non-Linearity

!"

!#

!$

!%

&$

&#

1

&" () = + !%+ -
./"

#
& . ! .

Non-linear
activation function

Output
Linear combination

of inputs

Σ ()

Output

Bias

The Perceptron: Forward Propagation

Inputs Weights Sum Non-Linearity

!"

!#

!$

!%

&$

&#

1

&"
() = + !%+ -

./"

#
& . ! .

Σ ()

Output

The Perceptron: Forward Propagation

() = + !%+1 23

where: 1 =
&"
⋮
&#

and3 =
!"
⋮
!#

Inputs Weights Sum Non-Linearity

!"

!#

!$

!%

&$

&#

1

&"
Σ)*

Output

The Perceptron: Forward Propagation

)* = , !%+./0

Activation Functions

• Example: sigmoid function

, 1 = 2 1 = 1
1 + 3 45

1

Common Activation Functions

NOTE: All activation functions are non-linear

! " = 1
1 + & '(

Sigmoid Function

! ′ " = !(") 1 − !(")

! " = & (− & '(
& (+ & '(

Hyperbolic Tangent

! ′ " = 1 − !(")-

! " = max (0 , ")

Rectified Linear Unit (ReLU)

! ′ (") = 3 1 , " > 0
0 , otherwise

tf.nn.sigmoid(z) tf.nn.tanh(z) tf.nn.relu(z)

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

What if we wanted to build a Neural Network to
distinguish green vs red points?

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

Linear Activation functions produce linear
decisions no matter the network size

Importance of Activation Functions

Linear Activation functions produce linear
decisions no matter the network size

Non-linearities allow us to approximate
arbitrarily complex functions

The purpose of activation functions is to introduce non-linearities into the network

The Perceptron: Example

1

−2

3 Σ&'

&(

1

)*

We have: +, = 1 and . = 3
−2

)* = / +,+12.
= / 1 + &'

&(
2 3
−2

)* = / (1 + 3&' − 2&()

This is just a line in 2D!

The Perceptron: Example

1

−2

3 Σ&'

&(

1

)*

)* = , (1 + 3&' − 2&()

1 +
3& '

− 2
& (
=
0

& '

& (

The Perceptron: Example

1

−2

3 Σ&'

&(

1

)*

)* = , (1 + 3&' − 2&()

Assume we have input: 0 = −1
2

−1
2

)* = , 1 + 3∗−1 − 2∗2
= , −6 ≈ 0.002

1+
3& '

− 2
& (
=
0

& '

& (

The Perceptron: Example

1

−2

3 Σ&'

&(

1

)*

)* = , (1 + 3&' − 2&()

1 +
3& '

− 2
& (
=
0

& '

& (

1 < 0
* < 0.5

1 > 0
* > 0.5

Building Neural Networks with Perceptrons

Inputs Weights Sum Non-Linearity

!"

!#

!$

!%

&$

&#

1

&"
Σ)*

Output

The Perceptron: Simplified

The Perceptron: Simplified

!"

!#

!$

% & = (%

% =)* +,
-.$

#
!-)-

Multi Output Perceptron

!"

!#

!$

%"

%$
&$ = (%$

&" = (%"

%) = *+,) +./0$

#
!/ */,)

Single Layer Neural Network

Inputs

!"

!#

!$

Hidden

%&

%"

'("

'($

Final Output

%$

%)*

%+ = -.,+
($) +3

45$

#
!4 -4,+

($) '(+ = 6 -.,+
(") +3

45$

)*
%4 -4,+

(")

6 %$

6 %"

6 %&

6 %)*

7($) 7(")

Single Layer Neural Network

!"

!#

!$

%&

%"

'("

'($

%$

%)*

%" = ,-,"($) +234$

#
!3 ,3,"

($)

= ,-,"($) + !$,$,"($) + !" ,","($) + !# ,#,"($)

5$,"($)

5","($)

5#,"($)

Multi Output Perceptron

Inputs

!"

!#

!$

Hidden

%&

%"

'("

'($

Output

%$

%)*

from tf.keras.layers import *

inputs = Inputs(m)
hidden = Dense(d1)(inputs)
outputs = Dense(2)(hidden)
model = Model(inputs, outputs)

Deep Neural Network

Inputs

!"

!#

!$

Hidden

%&,(

%&,"

)*"

)*$

Output

%&,$

%&,+,

%&,- = /0,-
(&) +4

56$

+,78
9(%&:$,5) /5,-

(&)

⋯ ⋯

Applying Neural Networks

Example Problem

Will I pass this class?

Let’s start with a simple two feature model

!" = Number of lectures you attend
!$ = Hours spent on the final project

Example Problem: Will I pass this class?

! " = Hours
spent on the
final project

!$ = Number of lectures you attend

Pass
Fail

Legend

Example Problem: Will I pass this class?

! " = Hours
spent on the
final project

!$ = Number of lectures you attend

Pass
Fail

Legend

?
4
5

Example Problem: Will I pass this class?

!"

!#

$%

$" &'#

$#

! # = 4 ,5 Predicted: 0.1

Example Problem: Will I pass this class?

!"

!#

$%

$" &'#

$#

Predicted: 0.1
Actual: 1! # = 4 ,5

Quantifying Loss

!"

!#

$%

$" &'#

$#

Predicted: 0.1
Actual: 1

The loss of our network measures the cost incurred from incorrect predictions

ℒ , !(.); 1 , '(.)
Predicted Actual

! # = 4 ,5

Empirical Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

The empirical loss measures the total loss over our entire dataset

5
1
8
⋮

) =
0.1
0.8
0.6
⋮

+(!)

1
0
1
⋮

'

. / = 1
1234#

5
ℒ + !(3);/ , '(3)

Predicted Actual

Also known as:
• Objective function
• Cost function
• Empirical Risk

Binary Cross Entropy Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

Cross entropy loss can be used with models that output a probability between 0 and 1

5
1
8
⋮

) =
0.1
0.8
0.6
⋮

+(!)

1
0
1
⋮

'

. / = 1
1234#

5
'(3) log + ! 3 ;/ + (1 − '(3)) log 1 − + ! 3 ;/

PredictedActualPredictedActual

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(model.y, model.pred))

Mean Squared Error Loss

!"

!#

$%

$" &'#

$#
4,
2,
5,
⋮

Mean squared error loss can be used with regression models that output continuous real numbers

5
1
8
⋮

) =
30
80
85
⋮

+(!)

90
20
95
⋮

'

. / = 1
1234#

5
' 3 − + ! 3 ;/

"

PredictedActual

loss = tf.reduce_mean(tf.square(tf.subtract(model.y, model.pred))

Final Grades
(percentage)

Training Neural Networks

Loss Optimization

We want to find the network weights that achieve the lowest loss

!∗ = argmin
!

1
+,-./

0
ℒ 2 3(-);! , 8(-)

!∗ = argmin
!

9(!)

Loss Optimization

We want to find the network weights that achieve the lowest loss

!∗ = argmin
!

1
+,-./

0
ℒ 2 3(-);! , 8(-)

!∗ = argmin
!

9(!)

Remember:
! = !(:),!(/),⋯

Loss Optimization

!∗ = argmin
!

*(!)

*(-., -0)

-0-.

Remember:
Our loss is a function of
the network weights!

Loss Optimization

Randomly pick an initial ("#, "%)

'("#, "%)

"%"#

Loss Optimization

Compute gradient, !"($)!$

&('(,'*)

'*'(

Loss Optimization

Take small step in opposite direction of gradient

!(#$, #&)

#&#$

Gradient Descent

Repeat until convergence

!(#$, #&)

#&#$

Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Compute gradient,)*(+))+
4. Update weights, + ←+− .)*(+))+
5. Return weights

weights = tf.random_normal(shape, stddev=sigma)

grads = tf.gradients(ys=loss, xs=weights)

weights_new = weights.assign(weights – lr * grads)

Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Compute gradient,)*(+))+
4. Update weights, + ←+− .)*(+))+
5. Return weights

weights = tf.random_normal(shape, stddev=sigma)

grads = tf.gradients(ys=loss, xs=weights)

weights_new = weights.assign(weights – lr * grads)

Computing Gradients: Backpropagation

How does a small change in one weight (ex. !") affect the final loss #(%)?

' () *+
!) !" #(%)

Computing Gradients: Backpropagation

!"($)
!&'

=

) *+ ,-
&+ &' "($)

Let’s use the chain rule!

Computing Gradients: Backpropagation

!"($)
!&'

= !"($)
!)* ∗ !)*

!&'

, -.)*
&. &' "($)

Computing Gradients: Backpropagation

!"($)
!&'

= !"($)
!)* ∗ !)*

!&'

, -')*
&' &. "($)

Apply chain rule! Apply chain rule!

Computing Gradients: Backpropagation

!"($)
!&'

= !"($)
!)* ∗ !)*

!,'

- ,')*
&' &. "($)

∗ !,'
!&'

Computing Gradients: Backpropagation

!"($)
!&'

= !"($)
!)* ∗ !)*

!,'

- ,')*
&' &. "($)

∗ !,'
!&'

Repeat this for every weight in the network using gradients from later layers

Neural Networks in Practice:
Optimization

Training Neural Networks is Difficult

“Visualizing the loss landscape
of neural nets”. Dec 2017.

Loss Functions Can Be Difficult to Optimize

Remember:
Optimization through gradient descent

! ← ! − $ %&(!)
%!

Remember:
Optimization through gradient descent

! ← ! − $ %&(!)
%!

How can we set the
learning rate?

Loss Functions Can Be Difficult to Optimize

Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Initial guess

!

"(!)

Setting the Learning Rate

Large learning rates overshoot, become unstable and diverge

Initial guess

!

"(!)

Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima

Initial guess

!

"($)

How to deal with this?

Idea 1:
Try lots of different learning rates and see what works “just right”

How to deal with this?

Idea 1:
Try lots of different learning rates and see what works “just right”

Idea 2:
Do something smarter!

Design an adaptive learning rate that “adapts” to the landscape

Adaptive Learning Rates

• Learning rates are no longer fixed
• Can be made larger or smaller depending on:
• how large gradient is
• how fast learning is happening
• size of particular weights
• etc...

Adaptive Learning Rate Algorithms

• Momentum
• Adagrad
• Adadelta
• Adam
• RMSProp

tf.train.MomentumOptimizer

tf.train.AdagradOptimizer

tf.train.AdadeltaOptimizer

tf.train.AdamOptimizer

tf.train.RMSPropOptimizer

Qian et al. “On the momentum term in gradient
descent learning algorithms.” 1999.

Duchi et al. “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization.” 2011.

Zeiler et al. “ADADELTA: An Adaptive Learning Rate
Method.” 2012.

Kingma et al. “Adam: A Method for Stochastic
Optimization.” 2014.

Neural Networks in Practice:
Mini-batches

Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Compute gradient,)*(+))+
4. Update weights, + ←+− .)*(+))+
5. Return weights

Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Compute gradient,)*(+))+
4. Update weights, + ←+− .)*(+))+
5. Return weights

Can be very
computational to

compute!

Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Pick single data point)
4. Compute gradient, *+,(-)*-
5. Update weights, - ←-− 0 *+(-)*-
6. Return weights

Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Pick single data point)
4. Compute gradient, *+,(-)*-
5. Update weights, - ←-− 0 *+(-)*-
6. Return weights

Easy to compute but
very noisy
(stochastic)!

Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Pick batch of) data points

4. Compute gradient, *+(,)*, = .
/∑12.

/ *+3(,)
*,

5. Update weights, , ←,− 6 *+(,)*,
6. Return weights

Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Pick batch of) data points

4. Compute gradient, *+(,)*, = .
/∑12.

/ *+3(,)
*,

5. Update weights, , ←,− 6 *+(,)*,
6. Return weights

Fast to compute and a much better
estimate of the true gradient!

Mini-batches while training

More accurate estimation of gradient
Smoother convergence

Allows for larger learning rates

Mini-batches while training

More accurate estimation of gradient
Smoother convergence

Allows for larger learning rates

Mini-batches lead to fast training!
Can parallelize computation + achieve significant speed increases on GPU’s

Neural Networks in Practice:
Overfitting

The Problem of Overfitting

Underfitting
Model does not have capacity

to fully learn the data

Ideal fit Overfitting
Too complex, extra parameters,

does not generalize well

Regularization

What is it?
Technique that constrains our optimization problem to discourage complex models

Regularization

What is it?
Technique that constrains our optimization problem to discourage complex models

Why do we need it?
Improve generalization of our model on unseen data

Regularization 1: Dropout

!"

!#

!$

%&"

%&$

'$,#

'$,"

'$,$

'$,)

'",#

'","

'",$

'",)

• During training, randomly set some activations to 0

Regularization 1: Dropout

!"

!#

!$

%&"

%&$

'$,#

'$,"

'$,$

'$,)

'",#

'","

'",$

'",)

• During training, randomly set some activations to 0
• Typically ‘drop’ 50% of activations in layer
• Forces network to not rely on any 1 node

tf.keras.layers.Dropout(p=0.5)

Regularization 1: Dropout

!"

!#

!$

%&"

%&$

'$,#

'$,"

'$,$

'$,)

'",#

'","

'",$

'",)

• During training, randomly set some activations to 0
• Typically ‘drop’ 50% of activations in layer
• Forces network to not rely on any 1 node

tf.keras.layers.Dropout(p=0.5)

Regularization 2: Early Stopping

• Stop training before we have a chance to overfit

Training Iterations

Loss

Regularization 2: Early Stopping

• Stop training before we have a chance to overfit

Training Iterations

Loss Testing

Training

Legend

Regularization 2: Early Stopping

• Stop training before we have a chance to overfit

Training Iterations

Loss

Training

Legend

Testing

Regularization 2: Early Stopping

• Stop training before we have a chance to overfit

Training Iterations

Loss

Training

Legend

Testing

Regularization 2: Early Stopping

Training Iterations

Loss

Training

Legend

Testing

• Stop training before we have a chance to overfit

Regularization 2: Early Stopping

Training Iterations

Loss

Training

Legend

Testing

• Stop training before we have a chance to overfit

Regularization 2: Early Stopping

Training Iterations

Loss

Training

Legend

Stop training
here!

Testing

• Stop training before we have a chance to overfit

Regularization 2: Early Stopping

Training Iterations

Loss

Training

Legend

Stop training
here!

Over-fittingUnder-fitting

Testing

• Stop training before we have a chance to overfit

Core Foundation Review

• Structural building blocks
• Nonlinear activation

functions

The Perceptron Neural Networks Training in Practice

• Stacking Perceptrons to
form neural networks

• Optimization through
backpropagation

• Adaptive learning
• Batching
• Regularization

Σ"#

"$

"%

&' "#

"$

"%

(),+

(),#

&'#

&'%

(),%

(),,-

⋯ ⋯

Questions?

