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The Rise of Deep Learning



   

What is Deep Learning?

ARTIFICIAL

INTELLIGENCE
MACHINE LEARNING

DEEP LEARNINGAny technique that enables 
computers to mimic 

human behavior
Ability to learn without 

explicitly being programmed Extract patterns from data using 
neural networks



Why Deep Learning and Why Now?



   

Why Deep Learning?

Hand engineered features are time consuming, brittle and not scalable in practice
Can we learn the underlying features directly from data? 

Low Level Features

Lines & Edges Eyes & Nose & Ears Facial Structure

Mid Level Features High Level Features



   

Why Now?

1952 Stochastic Gradient 
Descent

1958 Perceptron
• Learnable Weights

1995 Deep Convolutional NN
• Digit Recognition

1986 Backpropagation
• Multi-Layer Perceptron

1. Big Data
• Larger Datasets
• Easier Collection 

& Storage

2. Hardware
• Graphics 

Processing Units 
(GPUs)

• Massively 
Parallelizable

3. Software
• Improved 

Techniques
• New Models
• Toolboxes

Neural Networks date back decades, so why the resurgence? 



The Perceptron
The structural building block of deep learning



   

The Perceptron: Forward Propagation
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Inputs Weights Sum Non-Linearity
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The Perceptron: Forward Propagation



   

Inputs Weights Sum Non-Linearity
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Inputs Weights Sum Non-Linearity
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The Perceptron: Forward Propagation
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Common Activation Functions

NOTE:  All activation functions are non-linear

! " = 1
1 + & '(

Sigmoid Function

! ′ " = !(") 1 − !(")

! " = & ( − & '(
& ( + & '(

Hyperbolic Tangent

! ′ " = 1 − !(")-

! " = max ( 0 , " )

Rectified Linear Unit (ReLU)

! ′ ( " ) = 3 1 , " > 0
0 , otherwise

tf.nn.sigmoid(z) tf.nn.tanh(z) tf.nn.relu(z)



   

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

What if we wanted to build a Neural Network to 
distinguish green vs red points?



   

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

Linear Activation functions produce linear 
decisions no matter the network size



   

Importance of Activation Functions

Linear Activation functions produce linear 
decisions no matter the network size

Non-linearities allow us to approximate 
arbitrarily complex functions

The purpose of activation functions is to introduce non-linearities into the network



   

The Perceptron: Example
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The Perceptron: Example
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The Perceptron: Example
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The Perceptron: Example
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Building Neural Networks with Perceptrons



   

Inputs Weights Sum Non-Linearity
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The Perceptron: Simplified



   

The Perceptron: Simplified
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Multi Output Perceptron
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Single Layer Neural Network

Inputs
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Single Layer Neural Network
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Multi Output Perceptron
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from tf.keras.layers import *

inputs = Inputs(m)
hidden = Dense(d1)(inputs)
outputs = Dense(2)(hidden)
model = Model(inputs, outputs)



   

Deep Neural Network
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Applying Neural Networks



   

Example Problem

Will I pass this class?

Let’s start with a simple two feature model

!" = Number of lectures you attend
!$ = Hours spent on the final project



   

Example Problem:  Will I pass this class?

! " = Hours 
spent on the 
final project

!$ = Number of lectures you attend

Pass
Fail

Legend



   

Example Problem:  Will I pass this class?

! " = Hours 
spent on the 
final project

!$ = Number of lectures you attend

Pass
Fail

Legend

?
4
5



   

Example Problem:  Will I pass this class?
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Example Problem:  Will I pass this class?
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Quantifying Loss
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Predicted: 0.1
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The loss of our network measures the cost incurred from incorrect predictions
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Empirical Loss
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The empirical loss measures the total loss over our entire dataset
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Also known as: 
• Objective function
• Cost function
• Empirical Risk



Binary Cross Entropy Loss
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Cross entropy loss can be used with models that output a probability between 0 and 1
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loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(model.y, model.pred) )



Mean Squared Error Loss
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Mean squared error loss can be used with regression models that output continuous real numbers
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Training Neural Networks



   

Loss Optimization

We want to find the network weights that achieve the lowest loss
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Loss Optimization

We want to find the network weights that achieve the lowest loss

!∗ = argmin
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Loss Optimization

!∗ = argmin
!
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*(-., -0)
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Remember: 
Our loss is a function of 
the network weights!



Loss Optimization

Randomly pick an initial ("#, "%)
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Loss Optimization

Compute gradient, !"($)!$
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Loss Optimization

Take small step in opposite direction of gradient
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Gradient Descent

Repeat until convergence
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Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Compute gradient, )*(+))+
4. Update weights, + ←+− . )*(+))+
5. Return weights

weights = tf.random_normal(shape, stddev=sigma)

grads = tf.gradients(ys=loss, xs=weights)

weights_new = weights.assign(weights – lr * grads)



   

Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Compute gradient, )*(+))+
4. Update weights, + ←+− . )*(+))+
5. Return weights

weights = tf.random_normal(shape, stddev=sigma)

grads = tf.gradients(ys=loss, xs=weights)

weights_new = weights.assign(weights – lr * grads)



   

Computing Gradients: Backpropagation

How does a small change in one weight (ex. !") affect the final loss #(%)?

' () *+
!) !" #(%)



   

Computing Gradients: Backpropagation
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Computing Gradients: Backpropagation
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Computing Gradients: Backpropagation
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Apply chain rule! Apply chain rule!



   

Computing Gradients: Backpropagation
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Computing Gradients: Backpropagation
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Repeat this for every weight in the network using gradients from later layers



Neural Networks in Practice:
Optimization



   

Training Neural Networks is Difficult

“Visualizing the loss landscape 
of neural nets”. Dec 2017. 



   

Loss Functions Can Be Difficult to Optimize

Remember: 
Optimization through gradient descent

! ← ! − $ %&(!)
%!



   

Remember: 
Optimization through gradient descent

! ← ! − $ %&(!)
%!

How can we set the 
learning rate?

Loss Functions Can Be Difficult to Optimize



   

Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Initial guess

!
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Setting the Learning Rate

Large learning rates overshoot, become unstable and diverge

Initial guess

!

"(!)



   

Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima

Initial guess

!

"($)



   

How to deal with this?

Idea 1: 
Try lots of different learning rates and see what works “just right”



   

How to deal with this?

Idea 1: 
Try lots of different learning rates and see what works “just right”

Idea 2: 
Do something smarter!

Design an adaptive learning rate that “adapts” to the landscape



   

Adaptive Learning Rates

• Learning rates are no longer fixed
• Can be made larger or smaller depending on: 
• how large gradient is 
• how fast learning is happening
• size of particular weights
• etc...



   

Adaptive Learning Rate Algorithms

• Momentum
• Adagrad
• Adadelta
• Adam
• RMSProp

 

tf.train.MomentumOptimizer

tf.train.AdagradOptimizer

tf.train.AdadeltaOptimizer

tf.train.AdamOptimizer

tf.train.RMSPropOptimizer

Qian et al. “On the momentum term in gradient 
descent learning algorithms.” 1999.

Duchi et al. “Adaptive Subgradient Methods for Online 
Learning and Stochastic Optimization.” 2011.

Zeiler et al. “ADADELTA: An Adaptive Learning Rate 
Method.” 2012.

Kingma et al. “Adam: A Method for Stochastic 
Optimization.” 2014.



Neural Networks in Practice:
Mini-batches



   

Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Compute gradient, )*(+))+
4. Update weights, + ←+− . )*(+))+
5. Return weights



   

Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Compute gradient, )*(+))+
4. Update weights, + ←+− . )*(+))+
5. Return weights

Can be very 
computational to 

compute!



   

Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Pick single data point )
4. Compute gradient, *+,(-)*-
5. Update weights, - ←-− 0 *+(-)*-
6. Return weights



   

Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Pick single data point )
4. Compute gradient, *+,(-)*-
5. Update weights, - ←-− 0 *+(-)*-
6. Return weights

Easy to compute but 
very noisy 
(stochastic)!



   

Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Pick batch of ) data points

4. Compute gradient, *+(,)*, = .
/∑12.

/ *+3(,)
*,

5. Update weights, , ←,− 6 *+(,)*,
6. Return weights



   

Stochastic Gradient Descent

Algorithm

1. Initialize weights randomly ~"(0, &')
2. Loop until convergence:

3. Pick batch of ) data points

4. Compute gradient, *+(,)*, = .
/∑12.

/ *+3(,)
*,

5. Update weights, , ←,− 6 *+(,)*,
6. Return weights

Fast to compute and a much better 
estimate of the true gradient!



   

Mini-batches while training

More accurate estimation of gradient
Smoother convergence

Allows for larger learning rates



   

Mini-batches while training

More accurate estimation of gradient
Smoother convergence

Allows for larger learning rates

Mini-batches lead to fast training!
Can parallelize computation + achieve significant speed increases on GPU’s



Neural Networks in Practice:
Overfitting



   

The Problem of Overfitting

Underfitting
Model does not have capacity 

to fully learn the data

Ideal fit Overfitting
Too complex, extra parameters, 

does not generalize well



   

Regularization

What is it? 
Technique that constrains our optimization problem to discourage complex models



   

Regularization

What is it? 
Technique that constrains our optimization problem to discourage complex models

Why do we need it?
Improve generalization of our model on unseen data



   

Regularization 1: Dropout
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• During training, randomly set some activations to 0



   

Regularization 1: Dropout
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• During training, randomly set some activations to 0
• Typically ‘drop’ 50% of activations in layer
• Forces network to not rely on any 1 node

tf.keras.layers.Dropout(p=0.5)



   

Regularization 1: Dropout
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• During training, randomly set some activations to 0
• Typically ‘drop’ 50% of activations in layer
• Forces network to not rely on any 1 node

tf.keras.layers.Dropout(p=0.5)



   

Regularization 2: Early Stopping

• Stop training before we have a chance to overfit

Training Iterations

Loss



   

Regularization 2: Early Stopping

• Stop training before we have a chance to overfit

Training Iterations

Loss Testing

Training

Legend



   

Regularization 2: Early Stopping

• Stop training before we have a chance to overfit
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Legend

Testing



   

Regularization 2: Early Stopping

• Stop training before we have a chance to overfit
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Regularization 2: Early Stopping

Training Iterations

Loss

Training

Legend
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• Stop training before we have a chance to overfit



   

Regularization 2: Early Stopping

Training Iterations

Loss

Training

Legend

Testing

• Stop training before we have a chance to overfit



   

Regularization 2: Early Stopping

Training Iterations

Loss

Training

Legend

Stop training 
here!

Testing

• Stop training before we have a chance to overfit



   

Regularization 2: Early Stopping

Training Iterations

Loss

Training

Legend

Stop training 
here!

Over-fittingUnder-fitting

Testing

• Stop training before we have a chance to overfit



   

Core Foundation Review

• Structural building blocks
• Nonlinear activation 

functions

The Perceptron Neural Networks Training in Practice

• Stacking Perceptrons to 
form neural networks

• Optimization through 
backpropagation

• Adaptive learning
• Batching
• Regularization 
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Questions?


