Node.js
Blocking & NonBlocking
Introduction

Synchronous code

const filesystem=require{ fs');

ar textread= filesystem.readFileSync(’./txt/filetoread.txt’, 'utf8’);
console.log{textread);

- S%mc \(bVQHOULE CD%E —> H@C\fu‘m}% coéxe

* This means that each statement is processed one after the other
So each line waits for the result of the previous one

Asynchronous code

\synchronous code allow us to transfer heavy work in the backgroun
n order for the rest of the code to continue being executed

\synchronous code - > non-blocking code

from Synchronous to Asynchronous

s.readFile() method syntax:
s.readFile(filename, encoding, callback_function)

ilename: holds the name/path of the file to read
ancoding:holds the encoding of file (default :‘utf&’)

allback_function: a function that is called after reading of file. It takes two
darameters:

»err: If any error occurs

callback function

allbacks for some are considered the foundation of Node.js

n Node.js we are able to use callback functions in order to impleme
asynchronous behavior

A callback ->is a function called at the completion of a given task
»any blocking is prevented that way
» it allows other code to run in the meantime

callback function

he general idea is that the callback is the last parameter (in a metha
Or function)

t gets called after the function is done with all operations.

sually the first parameter of the callback is ->error value.

Asynchronous code

read_asynch,js > ...
const filesystem=require('fs');

// simplest way to read a file in Node.js 1is to use the fs.readFile() method,
// passing it the file path, encoding and a callback

//function that will be called with the file data (and the error):
filesystem.readFile('./txt/filetoread.txt’', 'utf8', (err, data)=>{

1
2
3
4
5

// Display the file content
console.log(data);
console.log(err);

s

W N B @ W 0~

console.log('readFile called')d

Asynchronous code

Juestion: When we execute the code above, which log do
xpect to see first?

Asynchronous code

ull Stack Javascript Development\nodejs\first app> node read asynch.js
readFile called

I will be your teacher for this course! Yeah!
null

the file is being read in the background and then, immediately execution is moved ¢
e next statement, printing to the console

Asynchronous code error example

no ﬂcxxC/\

ode read_asynch.js
readFile called

LError: ENOENT: no such file or directory, open 'C:\Users\Aristea\Dropbox\My PC (DESKTOP-Q7S4FTP)\Documents\Papei\JS course\Full St
ack Javascript Development\nodejs\first_app\txt\ss.txt'] {
errno: -4058,
code:
syscall:
path:

Why is this important...

ode.js is single threaded ->each application runs in a single thread

\|| user accessing the application they access the same thread
//not like php for example that each user has a different thread

hen a users blocks a thread with synchronous code all users need to wait for t
ode to be executed

agine thousands of users....

Why is this important...

o Node.js to avoid that, we use asynchronous, non-blocking code.

asynchronous code -> we upload heavy work to be worked on in the backgrou
* once that work is done -> a callback function is called to handle the result.

uring all that time.... rest of the code can still be executed (thus no blocking by
eavy task)

Why is this important...

et's consider a case where each request to a web server takes 50ms
o complete and 45ms of that 50ms is database I/O that can be done
asynchronously.

hoosing non-blocking asynchronous operations frees up that 45ms
per request to handle other requests. This is a significant difference |
apacity just by choosing to use non-blocking methods instead of
olocking methods.

Why is this important...

he Nodels event loop is a single thread

3ut when this single thread encounters blocking i/o => it will delegate
he task to a separate pool of worker threads.

Embedded async code

first_app > J5 read_asynch_embedded,s > ...
const filesystem=require(fs");

—c _
- U
e at akes as arg o
=l 185 C Takes as a Lime

-

Filezystem.readFileﬂ'.f:xtfrct_ewbeddd.txt', ‘utf8’, (err, data)=>{
if(err) return console.log("oups!!!™)

—i s s A== fents =S 2 - 1 b L= 2= =
i pa" - = ¥ T] = =3 = 't =10 T=

LA . & L Lol L e A LA LS LA L di=) =

filesystem.readFile(./txt/${data}.txt”, 'utf8', (err, datal)=>{

. |
M3 cr = the i = = mEeERE
Ll Lldly = = 1 BB = b L

console.log(datal);
console.log(err);

I3 H
}Iﬂ;

console.log{ 'Reading file....");

Embedded async code

Reading file....

fello there!

I am the embedded!

I hope everything 1s understandable, have a nice day!

null

Lets see how we can perform the following:

* Create directory with asyncronous function :

const fs = require('fs');
fs.mkdir('newdir', (err)=>{
if(err){
console.log('failed to create directory');
return console.error(err);
telse{
console.log('Directory created successfully');

To be continued...

https://nodejs.org/api/fs.html

	Διαφάνεια 1: Node.js Blocking & NonBlocking Introduction
	Διαφάνεια 2: Synchronous code
	Διαφάνεια 3: Asynchronous code
	Διαφάνεια 4: from Synchronous to Asynchronous
	Διαφάνεια 5: callback_function
	Διαφάνεια 6: callback_function
	Διαφάνεια 7: Asynchronous code
	Διαφάνεια 8: Asynchronous code
	Διαφάνεια 9: Asynchronous code
	Διαφάνεια 10: Asynchronous code error example
	Διαφάνεια 11: Why is this important…
	Διαφάνεια 12: Why is this important…
	Διαφάνεια 13: Why is this important…
	Διαφάνεια 14: Why is this important…
	Διαφάνεια 15: Embedded async code
	Διαφάνεια 16: Embedded async code
	Διαφάνεια 17
	Διαφάνεια 18

