
21/3/22, 7:40 PMBackpropagation Through Time for Recurrent Neural Network | Mustafa Murat ARAT

Page 1 of 13https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

Written by MMA
on February 07, 2019

16 mins to read.

Backpropagation
Through Time for
Recurrent Neural

Network

Mustafa Murat ARAT About Posts Archive Türkçe

softmax

Wyn

unfold

Wnh

softmax

Wyn
Whhht-1

Isoftmax

Ot

Wyn

https://mmuratarat.github.io/

21/3/22, 7:40 PMBackpropagation Through Time for Recurrent Neural Network | Mustafa Murat ARAT

Page 2 of 13https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

The dynamical system is de!ned by:

A conventional RNN is constructed by de!ning the transition
function and the output function for a single instance:

where , and are weight matrices for the input,

reccurent connections, and the output, respectively and and
are element-wise nonlinear functions. It is usual to use a saturating
nonlinear function such as logistic sigmoid function or a hyperbolic
tangent function for . is generally so"max activation for
classi!cation problem.

NOTE: Reusing same weight matrix every time step! is shared
across time - reduces the number of parameters!

Just like for feedforward neural networks, we can compute a
recurrent layer’s output in one shot for a whole mini-batch by
placing all the inputs at time step in an input matrix :

1. The weight matrices and are o"en concatenated

vertically into a single weight matrix of shape
.

2. The notation represents the horizontal concatenation
of the matrices and , shape of

Let’s denote as the number of instances in the mini-batch,
as the number of neurons, and as the number of input

features.

Whn

Won

Wnh

Wyn
Whhht-1

Xt.

Wyn
ht

Wen

X

Whn
hit1

ht

y ̂ t

= (,)fh Xt ht−1
= ()fo ht

ht

y ̂ t

= (,) = (⋅ + ⋅ +)fh Xt ht−1 ϕh W T
xh Xt W T

hh ht−1 bh

= () = (⋅ +)fo ht ϕo W T
yh ht by

Wxh Whh Wyh
ϕh ϕo

ϕh ϕo

W

t Xt

ht

ot

y ̂ t

= tanh(⋅ + ⋅ +)Xt Wxh ht−1 Whh bh
= ([] ⋅ W +)ϕh Xtht−1 bh

= ⋅ +ht Wyh by

= sof tmax()ot

Wxh Wyh
W

(+) ×ninputs nneurons nneurons
[]Xtht−1

Xt ht−1 m × (+)ninputs nneurons

m nneurons
ninputs

21/3/22, 7:40 PMBackpropagation Through Time for Recurrent Neural Network | Mustafa Murat ARAT

Page 3 of 13https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

1. is an matrix containing the inputs for all

instances.
2. is an matrix containing the hidden state of the

previous time-step for all instances.
3. is an matrix containing the connection

weights between input and the hidden layer.
4. is an matrix containing the connection

weights between two hidden layers.
5. is an matrix containing the connection

weights between the hidden layer and the output.
6. is a vector of size containing each neuron’s bias

term.
7. is a vector of size containing each output’s bias term.

8. is an matrix containing the layer’s outputs at
time step for each instance in the mini-batch

NOTE: At the !rst time step, , there are no previous outputs, so
they are typically assumed to be all zeros.

Backpropagation Through Time
In order to do backpropagation through time to train an RNN, we
need to compute the loss function !rst:

Note that the weight is shared across all the time sequence.

Therefore, we can di#erentiate to it at the each time step and sum
all together:

Xt m × ninputs

ht−1 m × nneurons

Wxh ×ninputs nneurons

Whh ×nneurons nneurons

Wyh ×nneurons nneurons

bh nneurons

by nneurons
yt m × nneurons

t

t = 0

L(, y)y ̂ = (,)∑
t=1

T
Lt y ̂ t yt

= − log∑
t

T
yt y ̂ t

= − log [sof tmax()]∑
t=1

T
yt ot

Wyh

=
T

21/3/22, 7:40 PMBackpropagation Through Time for Recurrent Neural Network | Mustafa Murat ARAT

Page 4 of 13https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

where derivative of Loss Function w.r.t. so"max function is proved

here and since and is the outer

product of two vectors.

Similarly, we can get the gradient w.r.t. bias :

Further, let’s use to denote the output of the time-step ,
.

Now, let’s go throught the details to derive the gradient with respect
to , considering at the time step (from time-step to

).

where we consider only one time-step (). But, the hidden
state partially depends also on according to the recursive
formulation (). Thus, at the
time-step , we can further get the partial derivative with
respect to as the following:

∂L
∂Wyh

= ∑
t

T ∂Lt
∂Wyh

= ∑
t

T ∂Lt
∂y ̂ t

∂y ̂ t
∂ot

∂ot
∂Wyh

= (−) ⊗∑
t

T
y ̂ t yt ht

=∂ot
∂Wyh

ht = ⋅ +ot ht Wyh by ⊗

by

∂L
∂by

= ∑
t

T ∂Lt
∂y ̂ t

∂y ̂ t
∂ot

∂ot
∂by

= (−)∑
t

T
y ̂ t yt

Lt+1 t + 1
= − logLt+1 yt+1 y ̂ t+1

Whh t → t + 1 t
t + 1

=∂Lt+1
∂Whh

∂Lt+1
∂y ̂ t+1

∂y ̂ t+1
∂ht+1

∂ht+1
∂Whh

t → t + 1
ht+1 ht

= tanh(⋅ + ⋅ +)ht W T
xh Xt W T

hh ht−1 bh
t − 1 → t
Whh

=∂Lt+1
∂Whh

∂Lt+1
∂y ̂ t+1

∂y ̂ t+1
∂ht+1

∂ht+1
∂ht

∂ht
∂Whh

https://mmuratarat.github.io/2019-02-10/derivative-of-softmax-loss

21/3/22, 7:40 PMBackpropagation Through Time for Recurrent Neural Network | Mustafa Murat ARAT

Page 5 of 13https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

Thus, at the time-step , we can compute the gradient and
further use backpropagation through time from to to
compute the overall gradient with respect to :

Note that is a chain rule in itself! For example, .

Also note that because we are taking the derivative of a vector
function with respect to a vector, the result is a matrix (called the
Jacobian matrix) whose elements are all the pointwise derivatives.
We can rewrite the above gradient:

where

NOTE: It turns out that the 2-norm, which you can think of it as an
absolute value, of the above Jacobian matrix has an upper bound of
1. This makes intuitive sense because our tanh (or sigmoid)
activation function maps all values into a range between -1 and 1,
and the derivative is bounded by 1 (1/4 in the case of sigmoid) as
well.

Let’s continue…

Aggregate the gradients with respect to over the whole time-
steps with backpropagation, we can !nally yield the following
gradient with respect to :

Now, let’s work on to derive the gradient with respect to .

t + 1
t + 1 1

Whh

=∂Lt+1
∂Whh ∑

k=1

t+1 ∂Lt+1
∂y ̂ t+1

∂y ̂ t+1
∂ht+1

∂ht+1
∂hk

∂hk
∂Whh

∂ht+1
∂hk

=∂h3
∂h1

∂h3
∂h2

∂h2
∂h1

= ()∂Lt+1
∂Whh ∑

k=1

t+1 ∂Lt+1
∂y ̂ t+1

∂y ̂ t+1
∂ht+1 ∏

j=k

t ∂hj+1
∂hj

∂hk
∂Whh

= = . . .∏
j=k

t ∂hj+1
∂hj

∂ht+1
∂hk

∂ht+1
∂ht

∂ht
∂ht−1

∂hk+1
∂hk

Whh

Whh

=∂L
∂Whh ∑

t

T

∑
k=1

t+1 ∂Lt+1
∂y ̂ t+1

∂y ̂ t+1
∂ht+1

∂ht+1
∂hk

∂hk
∂Whh

Wxh

21/3/22, 7:40 PMBackpropagation Through Time for Recurrent Neural Network | Mustafa Murat ARAT

Page 6 of 13https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

Similarly, we consider the time-step (which gets only
contribution from) and calculate the gradients with respect to

 as follows:

Because and both make contribution to , we need to
backpropagate to as well.

If we consider the contribution from the time-step, we can further
get:

Thus, summing up all the contributions from to via
Backpropagation, we can yield the gradient at the time-step :

Further, we can take the derivative with respect to over the
whole sequence as :

Do not forget that is a chain rule in itself, again!

Vanishing/Exploding Gradients with
vanilla RNNs
There are two factors that a#ect the magnitude of gradients - the
weights and the activation functions (or more precisely, their
derivatives) that the gradient passes through. In vanilla RNNs,
vanishing/exploding gradient comes from the repeated application
of the recurrent connections. More explicitly, they happen because

t + 1
Xt+1

Wxh

=∂Lt+1
∂Wxh

∂Lt+1
∂y ̂ t+1

∂y ̂ t+1
∂ht+1

∂ht+1
∂Wxh

ht Xt+1 ht+1
ht

= +∂Lt+1
∂Wxh

∂Lt+1
∂y ̂ t+1

∂y ̂ t+1
∂ht+1

∂ht+1
∂Wxh

∂Lt+1
∂y ̂ t+1

∂y ̂ t+1
∂ht+1

∂ht+1
∂ht

∂ht
∂Wxh

t + 1 1
t + 1

=∂Lt+1
∂Wxh ∑

k=1

t+1 ∂Lt+1
∂y ̂ t+1

∂y ̂ t+1
∂ht+1

∂ht+1
∂hk

∂hk
∂Wxh

Wxh

=∂L
∂Wxh ∑

t

T

∑
k=1

t+1 ∂Lt+1
∂y ̂ t+1

∂y ̂ t+1
∂ht+1

∂ht+1
∂hk

∂hk
∂Wxh

∂ht+1
∂hk

∂ht+1

21/3/22, 7:40 PMBackpropagation Through Time for Recurrent Neural Network | Mustafa Murat ARAT

Page 7 of 13https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

of recursive derivative we need to compute :

Now let us look at a single one of these terms by taking the
derivative of with respect to where diag turns a vector into a

diagonal matrix because this recursive partial derivative is a
Jacobian matrix:

Thus, if we want to backpropagate through timesteps, this
gradient will be:

If we perform eigendecomposition on the Jacobian matrix , we

get the eigenvalues where and
the corresponding eigenvectors .

Any change on the hidden state in the direction of a vector

has the e#ect of multiplying the change with the eigenvalue
associated with this eigenvector i.e .

The product of these Jacobians implies that subsequent time steps,
will result in scaling the change with a factor equivalent to , where

 represents the -th eigenvalue raised to the power of the current
time step .

Looking at the sequence , it is easy to see
that the factor will end up dominating the ’s because this term
grows exponentially fast as goes to in!nity.

This means that if the largest eigenvalue then the gradient
will vanish while if the value of , the gradient explodes.

∂ht+1
∂hk

= = . . .∏
j=k

t ∂hj+1
∂hj

∂ht+1
∂hk

∂ht+1
∂ht

∂ht
∂ht−1

∂hk+1
∂hk

hj+1 hj

= diag((⋅ + ⋅ +)∂hj+1
∂hj

ϕ′
h W T

xh Xj+1 W T
hh hj bh Whh

t − k

= diag((⋅ + ⋅ +)∏
j=k

t ∂hj+1
∂hj ∏

j=k

t
ϕ′

h W T
xh Xj+1 W T

hh hj bh Whh

∂hj+1
∂hj

, , ⋯ ,λ1 λ2 λn | | > | | > ⋯ > | |λ1 λ2 λn
, , ⋯ ,v1 v1 vn

Δhj+1 vi

Δλi hj+1

λt
i

λt
i i

t

Δ , Δ , … , Δλ1
i h1 λ2

i h2 λ1
n hn

λt
i Δht

t

< 1λ1
> 1λ1

21/3/22, 7:40 PMBackpropagation Through Time for Recurrent Neural Network | Mustafa Murat ARAT

Page 8 of 13https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

As also shown in this paper, if the dominant eigenvalue of the
matrix is greater than 1, the gradient explodes. If it is less than 1,
the gradient vanishes. The fact that this equation leads to either
vanishing or exploding gradients should make intuitive sense. Note
that the values of will always be less than 1. Because in vanilla
RNN, the activation function is used to be hyperbolic tangent
whose derivative is at most . So if the magnitude of the values of

 are too small, then inevitably the derivative will go to 0. The
repeated multiplications of values less than one would overpower
the repeated multiplications of . On the contrary, make too
big and the derivative will go to in!nity since the exponentiation of

 will overpower the repeated multiplication of the values less
than 1.

Vanishing gradients aren’t exclusive to RNNs. They also happen in
deep Feedforward Neural Networks. It’s just that RNNs tend to be
very deep, which makes the problem a lot more common.

These problems ultimately shows that if the gradient vanishes, it
means that the earlier hidden states have no real e#ect on the later
hidden states, meaning no long term dependencies are learned!

Fortunately, there are a few ways to come over the vanishing
gradient problem. Proper initialization of the weight matrices can
reduce the e#ect of vanishing gradients. So can regularization. A
more preferred solution is to use ReLU activation function instead
of hyperbolic tangent or sigmoid activation functions. The ReLU
derivative is a constant of either 0 or 1, so it isn’t as likely to su#er
from vanishing gradients. An even more popular solution is to use
Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU)

Whh

ϕ′
h

ϕh
1.0

Whh

Whh Whh

Whh

https://arxiv.org/pdf/1211.5063.pdf

21/3/22, 7:40 PMBackpropagation Through Time for Recurrent Neural Network | Mustafa Murat ARAT

Page 9 of 13https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

architectures.

Additional Explanation
Let’s take the norms of these Jacobians:

In this equation, we set , the largest eigenvalue associated with
 as its upper bound, while largest eigenvalue associated

with as its corresponding
upper-bound.

Depending on the chosen activation function , the derivative
will be upper bounded by di#erent values. For hyperbolic tangent
function, we have while for sigmoid function, we have

. Thus, the chosen upper bounds and end up being a
constant term resulting from their product:

The gradient is a product of Jacobian matrices that are

multiplied many times, times in our case:

This can become very small or very large quickly, and the locality
assumption of gradient descent breaks down as the sequence gets
longer (i.e the distance between and increases). Then the value of

 will determine if the gradient either gets very large (explodes) or
gets very small (vanishes).

Since is associated with the leading eigenvalues of , the

recursive product of Jacobian matrices makes it possible to
in$uence the overall gradient in such a way that for the

≤ ‖ ‖ diag((⋅ + ⋅ +)‖
‖
‖ ∂hj+1

∂hj

‖
‖
‖ Whh ‖‖ ϕ′

h W T
xh Xj+1 W T

hh hj bh ‖‖

γW
‖ ‖Whh γh

diag((⋅ + ⋅ +)‖‖ ϕ′
h W T

xh Xj+1 W T
hh hj bh ‖‖

ϕh ϕ′
h

= 1γh
= 0.25γh γW γh

≤ ‖ ‖ diag((⋅ + ⋅ +) ≤‖
‖
‖ ∂hj+1

∂hj

‖
‖
‖ Whh ‖‖ ϕ′

h W T
xh Xj+1 W T

hh hj bh ‖‖ γW γh

∂ht+1
∂hk

t − k

= ≤ (‖
‖‖

∂ht+1
∂hk

‖
‖‖

‖

‖
‖
‖∏

j=k

t ∂hj+1
∂hj

‖

‖
‖
‖ γW γh)t−k

t k
γ

γ ∂hj+1
∂hj

t − k
γ < 1

21/3/22, 7:40 PMBackpropagation Through Time for Recurrent Neural Network | Mustafa Murat ARAT

Page 10 of 13https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

gradient tends to vanish while for the gradient tends to
explode.

Vanishing/Exploding Gradients with
LSTMs
As can be seen easily above, the biggest problem with causing
gradients to vanish is the multiplication of recursive derivatives.
One of the approaches that was proposed to overcome this issue is
to use gated structures such as Long Short-Term Memory Networks.

In the original LSTM formulation, the value of depends on the
previous value of cell state and an update term weighted by the
input gate (pp. 7):

which we can re-write it in our terms as:

The original motivation behind this LSTM was to make this
recursive derivative have a constant value, which was equal to 1
because of the truncated BPTT algorithm. In other words, the
gradient calculation was truncated so as not to $ow back to the input
or candidate gates. If this is the case, then our gradients would
neither explode or vanish. However, this formulation doesn’t work
well because the cell state tends to grow uncontrollably. In order to
prevent this unbounded growth, a forget gate was added to scale the
previous cell state, leading to the more modern formulation
(Appendix A):

which we can re-write it in our terms as:

γ > 1

Ct

= + ∘Ct Ct−1 it C̃ t

= ∘ + ∘Ct ft Ct−1 it C̃ t

http://www.bioinf.jku.at/publications/older/2604.pdf
ftp://ftp.idsia.ch/pub/juergen/nn_2005.pdf

21/3/22, 7:40 PMBackpropagation Through Time for Recurrent Neural Network | Mustafa Murat ARAT

Page 11 of 13https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

However, there are so many documents out there online, that claim
that the reason of LSTM solving this vanishing gradient problem is
that under this update rule the recursive derivative is equal to 1 in
the case of original LSTM or (forget gate) in the case of modern

LSTM. However, , and are all functions of and so we have
to take them into consideration when calculating the derivation of

 with respect to .

NOTE: In the case of the forget gate LSTM, the recursive derivative
will still be a produce of many terms between 0 and 1 (the forget
gates at each time step), however in practice this is not as much of a
problem compared to the case of RNNs. One thing to remember is
that our network has direct control over what the values of will be.
If it needs to remember something, it can easily set the value of to
be high (lets say around 0.95). These values thus tend to shrink at a
much slower rate than when compared to the derivative values of
hyperbolic tangent function, which later on during the training
processes, are likely to be saturated and thus have a value close to 0.

Therefore, let’s !nd the full derivative . Remember that is a

function of (the forget gate), (input gate) and (candidate
input), each of these being a function of (since they are all
functions of). Via the multivariate chain rule we get:

If we explicitly write out these derivatives:

Now if we want to backpropagate back time steps, all we need to
do is to multiple the equation above times.

f
ft it Ct̃ Ct

Ct Ct−1

f
f

∂Ct
∂Ct−1

Ct

ft it Ct̃
Ct−1

ht−1

= + + +∂Ct
∂Ct−1

∂Ct
∂ft

∂ft
∂ht−1

∂ht−1
∂Ct−1

∂Ct
∂it

∂it
∂ht−1

∂ht−1
∂Ct−1

∂Ct

∂ C̃ t

∂ C̃ t
∂ht−1

∂ht−1
∂Ct−1

∂Ct
∂Ct−1

∂Ct
∂Ct−1

= (⋅) ∗ tan ()Ct−1σ ′ Whf ot−1 h′ Ct−1

+ (⋅) ∗ tan ()C̃ tσ ′ Whi ot−1 h′ Ct−1
+ (⋅) ∗ tan ()it tanh′ WC ot−1 h′ Ct−1
+ ft

k
k

∂ht+1

21/3/22, 7:40 PMBackpropagation Through Time for Recurrent Neural Network | Mustafa Murat ARAT

Page 12 of 13https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

In vanilla RNNs, the terms will eventually take on a values that

are either always above or always in the range , this is
essentially what leads to the vanishing/exploding gradient problem.

The terms here, , at any time step can take on either values that

are greater than 1 or values in the range . Thus if we extend to
an in!nite amount of time steps, it is not guarenteed that we will
end up converging to 0 or in!nity (unlike in vanilla RNNs). If we
start to converge to zero, we can always set the values of (and

other gate values) to be higher in order to bring the value of

closer to 1, thus preventing the gradients from vanishing (or at the
very least, preventing them from vanishing too quickly). One
important thing to note is that the values that (the forget gate),

(input gate), (output gate) and (candidate input) take on are
learned functions of the current input and hidden state by the
network. Thus, in this way the network learns to decide when to let
the gradient vanish, and when to preserve it, by setting the gate
values accordingly, meaning that the model would regulate its
forget gate value to prevent that from vanishing gradients.

Note: LSTM does not always protect you from exploding gradients!
Therefore, successful LSTM applications typically use gradient
clipping.

REFERENCES
1. http://www.wildml.com/2015/10/recurrent-neural-networks-

tutorial-part-3-backpropagation-through-time-and-vanishing-
gradients/

2. https://arxiv.org/abs/1610.02583
3. https://github.com/go2carter/nn-learn/blob/master/grad-

deriv-tex/rnn-grad-deriv.pdf
4. http://willwolf.io/2016/10/18/recurrent-neural-network-

gradients-and-lessons-learned-therein/
5. https://weberna.github.io/blog/2017/11/15/LSTM-Vanishing-

Gradients.html
6. https://medium.com/datadriveninvestor/how-do-lstm-

networks-solve-the-problem-of-vanishing-gradients-

∂ht+1
∂ht

1 [0, 1]

∂Ct
∂Ct−1

[0, 1]

ft
∂Ct

∂Ct−1

ft it
ot Ct̃

http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
https://arxiv.org/abs/1610.02583
https://github.com/go2carter/nn-learn/blob/master/grad-deriv-tex/rnn-grad-deriv.pdf
http://willwolf.io/2016/10/18/recurrent-neural-network-gradients-and-lessons-learned-therein/
https://weberna.github.io/blog/2017/11/15/LSTM-Vanishing-Gradients.html
https://medium.com/datadriveninvestor/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577

21/3/22, 7:40 PMBackpropagation Through Time for Recurrent Neural Network | Mustafa Murat ARAT

Page 13 of 13https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

a6784971a577
7. https://arxiv.org/abs/1211.5063
8. https://www.je%ine.com/general/2018/05/21/2018-05-21-

vanishing-and-exploding-gradient-problems/
9. "p://"p.idsia.ch/pub/juergen/nn_2005.pdf

© 2022 Mustafa Murat ARAT. Made with Jekyll using the Tale theme.

1 Comment MMA-Homepage ! Privacy Policy "1 Login

t Tweet f Share Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Join the discussion…

?

some fellow • 9 months ago

• Reply •

Hi, thank you so much for your incredibly informative post on BPTT. I've
been looking everywhere for something of this caliber.

I just have a question as to why you derive the loss gradient w.r.t. W_hh for
t->t-1? I know it's just a shift but I'm just wondering what the reason for
this is.

And shouldn't the partial derivative of h_k w.r.t. W_hh be an explicit
partial derivative?
△ ▽

 Favorite%

Share ›

← →Top

https://medium.com/datadriveninvestor/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577
https://arxiv.org/abs/1211.5063
https://www.jefkine.com/general/2018/05/21/2018-05-21-vanishing-and-exploding-gradient-problems/
ftp://ftp.idsia.ch/pub/juergen/nn_2005.pdf
https://github.com/chesterhow/tale/
https://disqus.com/home/forums/https-mmuratarat-github-io/
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://disqus.com/home/inbox/
https://disqus.com/embed/comments/?base=default&f=https-mmuratarat-github-io&t_i=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_u=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_d=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&t_t=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&s_o=default#
https://disqus.com/embed/comments/?base=default&f=https-mmuratarat-github-io&t_i=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_u=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_d=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&t_t=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&s_o=default#
https://mmuratarat.github.io/2019-02-07/bptt-of-rnn#comment-5418117230
https://disqus.com/embed/comments/?base=default&f=https-mmuratarat-github-io&t_i=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_u=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_d=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&t_t=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&s_o=default#
https://disqus.com/by/some_fellow/
https://disqus.com/embed/comments/?base=default&f=https-mmuratarat-github-io&t_i=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_u=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_d=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&t_t=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&s_o=default#
https://disqus.com/embed/comments/?base=default&f=https-mmuratarat-github-io&t_i=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_u=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_d=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&t_t=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&s_o=default#
https://disqus.com/embed/comments/?base=default&f=https-mmuratarat-github-io&t_i=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_u=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_d=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&t_t=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&s_o=default#
https://disqus.com/by/some_fellow/
https://disqus.com/embed/comments/?base=default&f=https-mmuratarat-github-io&t_i=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_u=https%3A%2F%2Fmmuratarat.github.io%2F%2F2019-02-07%2Fbptt-of-rnn&t_d=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&t_t=Backpropagation%20Through%20Time%20for%20Recurrent%20Neural%20Network&s_o=default#
https://mmuratarat.github.io/2019-02-10/derivative-of-softmax-loss
https://mmuratarat.github.io/2019-02-04/randoms-sums-of-random-variables

