Introduction to Deep Learning
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What is Deep Learning?




Why Deep Learning and Why Now!?



Why Deep Learning!?

Hand engineered features are time consuming, brittle and not scalable in practice

Can we learn the underlying features directly from data?

Low Level Features Mid Level Features High Level Features

Lines & Edges Eyes & Nose & Ears Facial Structure
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Stochastic Gradient
Descent

Perceptron
* Learnable Weights

Backpropagation
e Multi-Layer Perceptron

Deep Convolutional NN
* Digit Recognition

Why Now?

|. Big Data

e Larger Datasets
e FEasier Collection
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The Free Encyclopedia

2. Hardware

» Graphics
Processing Units
(GPUs)

* Massively
Parallelizable

Neural Networks date back decades, so why the resurgence!?

3. Software

* Improved
Techniques

e New Models
e Toolboxes




The Perceptron
The structural building block of deep learning



The Perceptron: Forward Propagation
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The Perceptron: Forward Propagation
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The Perceptron: Forward Propagation

Activation Functions
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Common Activation

Sigmoid Function
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Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network
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What if we wanted to build a Neural Network to
distinguish green vs red points?




Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network
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Linear Activation functions produce linear
decisions no matter the network size




Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network
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Linear Activation functions produce linear Non-linearities allow us to approximate
decisions no matter the network size arbitrarily complex functions




The Perceptron: Example

We have: wyg =1 and W = l_gzl

1 1
\ )7=9(W0+XTI;V)
X1 L n — /S y =g(1+[§;][32])
/ y=9g(1+3x,—2x3)
X, \ ~ J

This is just a line in 2D!




The Perceptron: Example
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The Perceptron: Example
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The Perceptron: Example
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Building Neural Networks with Perceptrons



The Perceptron: Simplified

0

W/'
X
2 /
X

m

)

Inputs  Weights Sum  Non-Linearity Output




The Perceptron: Simplified




Multi Output Perceptron
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Single Layer Neural Network
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Single Layer Neural Network
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Multi Output Perceptron

’*“ from tf.keras.layers import *

inputs Inputs (m)

hidden Dense (d;) (inputs)
outputs = Dense (2) (hidden)
Zl model = Model (inputs, outputs)
X1
Z3 Y1
:
Z3 Y2
xﬁn.
Zd1

Inputs Hidden Output




Deep Neural Network
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Applying Neural Networks



Example Problem

WIll | pass this class!

Let’s start with a simple two feature model

x1 = Number of lectures you attend

X, = Hours spent on the final project




Example Problem: Will | pass this class!?

X, = Hours
spent on the
final project

x1 = Number of lectures you attend




Example Problem: Will | pass this class!?

X, = Hours
spent on the
final project

x1 = Number of lectures you attend




Example Problem: Will | pass this class!?

x(l) = [4 ,5] Zy V1 Predicted: 0.1




Example Problem: Will | pass this class!?

1) __ " Predicted: 0.1
2 = [4,5] 2 Y1 Actual 1




Quantifying Loss

The loss of our network measures the cost incurred from incorrect predictions

Zq
| A .
[4,5] 7 B hcal
.
Z3

L (f (x(i); W), y(i))

Predicted Actual




Empirical Loss

The empirical loss measures the total loss over our entire dataset
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Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between O and |
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P

"8 loss = tf.reduce mean( tf.nn.softmax cross_entropy with logits (model.y, model.pred) )



Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers
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. loss = tf.reduce mean( tf.square(tf.subtract (model.y, model.pred) )



Training Neural Networks



Loss Optimization

We want to find the network weights that achieve the lowest loss

1~ . .
W* = argmin — E L(f(x(‘); W),y(‘))
w n i=1

W* = argmin J(W)
w




Loss Optimization

We want to find the network weights that achieve the lowest loss

n

1 . .
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W* = argmin J(W)
w

|

Remember:
W = {W(O), W(l)’ }




Loss Optimization

W* = argmin J (W)
w

Remember:
Our loss is a function of
the network weights!

](WOJ Wl) |




Loss Optimization

Randomly pick an initial (wq, wy)

](W0' Wl) |




Loss Optimization

. W)
Compute gradient, W

](WOJ Wl) |




Loss Optimization

Take small step in opposite direction of gradient

](WOJ Wl) |




Gradient Descent

Repeat until convergence

](WOJ Wl) '




Gradient Descent

Algorithm

.
2.
3.

4.
d.

Initialize weights randomly ~N (0,

Loop until convergence:

oj(W)
ow

Update weights, W « W —n

Compute gradient,

Return welights

d?)

oj(W)
ow

«>

Sy

Y

*T\ weights new = weights.assign(weights — lr * grads)

weights = tf.random normal (shape, stddev=sigma)

grads = tf.gradients (ys=loss, xs=weights)




Gradient Descent

Algorithm

.
2.
3.

4.
d.

Initialize weights randomly ~N (0,

Loop until convergence:

oJj(W)
ow

Update weights, W « W —n

Compute gradient,

Return welights
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*T\ weights new = weights.assign(weights — lr * grads)

weights = tf.random normal (shape, stddev=sigma)

grads = tf.gradients (ys=loss, xs=weights)




Computing Gradients: Backpropagation

How does a small change in one weight (ex. w,) dffect the final loss J(W)!




Computing Gradients: Backpropagation

X >z > 9 > J(W)

oJj(W)

aWZ
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Let's use the chain rule!




Computing Gradients: Backpropagation

Yw) _ogw) oy

dw, ay odw,




Computing Gradients: Backpropagation

Yw) _ogmw) 9y

owq ay owq

| — =T

Apply chain rule! Apply chain rule!




Computing Gradients: Backpropagation

Jw) _gmw) 33 oz

dwq ay 074 dwq




Computing Gradients: Backpropagation

Jyw) _gmw) 3 oz

dwq ay 074 dwq

Repeat this for every weight in the network using gradients from later layers




Neural Networks in Practice:
Optimization



Training Neural Networks is Difficult

“Visualizing the loss landscape
of neural nets”. Dec 201 7.




Loss Functions Can Be Difficult to Optimize

Remember:
Optimization through gradient descent




Loss Functions Can Be Difficult to Optimize

Remember:
Optimization through gradient descent

How can we set the
learning rate?




Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Jw),,

\ Initial guess




Setting the Learning Rate

Large learning rates overshoot, become unstable and diverge

Jw),,

\ Initial guess




Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima

J(6) .,

\ Initial guess




How to deal with this?

ldea |:

Try lots of different learning rates and see what works “just right”




How to deal with this?

ldea 2:

Do something smarter
Design an adaptive learning rate that “adapts’ to the landscape




Adaptive Learning Rates

* Learning rates are no longer fixed

* (Can be made larger or smaller depending on:

* how large gradient is

* how fast learning is happening
* size of particular weights

* elc..




Adaptive Learning Rate Algorithms

| . = Qian et al.“On the momentum term in gradient
Momentum T Cf-train.MomentumOptimizer descent learning algorithms.” 1999

&

Duchi et al."Adaptive Subgradient Methods for Online

Ad agrad ) SIS EE RN CEIEE0, Sleun A e Learning and Stochastic Optimization.’ 201 I.
o f train AdadeltaCotin Zeller et al."ADADELTA: An Adaptive Learning Rate
AC adelta S .train.AdadeltaOptimizer Method” 2017,

AC am /’s £ train. AdanOptintizer (K;nglma} etlal."‘:A\dam:A Method for Stochastic
: ptimization.” 2014.

RM S Pro , ’? tf.train.RMSPropOptimizer




Neural Networks in Practice:
Mini-batches



Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

oJj(W)
ow

3. Compute gradient,

oJj(w)
ow

4 Update weights, W « W —n

5. Return weights




Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3 Compute gradient, a];;l;) ~
4 Update weights, W « W —n a]a(;l/,)
5. Return weights
Can be very

computational to
compute!




Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick single data point i

4 - dJi(W)
Compute gradient, W

>. Update weights, W « W —n a]a(;l;)

6. Return weights




Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick single data point i

4 L O0Li(W)
Compute gradient, e

>. Update weights, W « W —n a]a(:z)

6. Return weights

Easy to compute but
very noisy
(stochastic)!




Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick batch of B data points |

4 Compute gradient, a](W) = —Zk 161231”) ; I
>. Update weights, W « W —n a](W)

6. Return weights




Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick batch of B data points |
4 Compute gradient, a](W) = —Zk 161(’;3,4,) f
>. Update weights, W « W —n a]a(w

6. Return weights

Fast to compute and a much better
estimate of the true gradient!




Mini-batches while training

More accurate estimation of gradient
Smoother convergence
Allows for larger learning rates




Mini-batches while training

Mini-batches lead to fast training!
Can parallelize computation + achieve significant speed increases on GPU's




Neural Networks in Practice:
Overdfitting



The Problem of Overfitting

Underfitting < Ideal fit > Overfitting
Model does not have capacity Too complex, extra parameters,
to fully learn the data does not generalize well




Regularization

What is it?

lechnique that constrains our optimization problem to discourage complex models




Regularization

Why do we need it?

Improve generalization of our model on unseen data




Regularization |: Dropout

* During training, randomly set some activations to O

Z11 Z21
X1

Z12 Z32
X2

Z1,3 Z23
X3




Regularization |: Dropout

* During training, randomly set some activations to O
* Typically ‘drop’ 50% of activations in layer -~

? " tf.keras.layers.Dropout (p=0.5)

* [orces network to not rely on any | node

Z21
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Z12 Y1
X2
Zy3 Y2
X3




Regularization |: Dropout

* During training, randomly set some activations to O
* Typically ‘drop’ 50% of activations in layer -~

? " tf.keras.layers.Dropout (p=0.5)

* [orces network to not rely on any | node

Z11
X1
Z2 2 Y1
X2
Z13 Z23 Y2
X3




Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
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Regularization 2: Early Stopping

* Stop training before we have a chance to overfit
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Under-fitting | Over-fitting
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Core Foundation Review

The Perceptron Neural Networks Training in Practice

 Structural building blocks  Stacking Perceptrons to * Adaptive learning
* Nonlinear activation form neural networks * Batching
functions * Optimization through * Regularization

backpropagation
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Questions!



