Introduction to Deep Learning

‘Deep Voice’ Software o o
aamemos | N€ Rise of Deep Learning uwerrsemacm
Voice With Just 3.7

Seconds of Audio

Using snippets of voices, Baidu's ‘Deep Voice’
can generate new speech, accents, and tones.

Let There Be Sight: How Deep Learning Is Helping the Blind ‘See’

.) . *hnology outpacing security AJ beats docs in cancer spottirn |
Ny = twitk [)EEPML\D | S Aoty g s cample o macine rin 2 impo P 4
P —3 STARCRAFT I l‘

&
el

TRIUMPH F(

‘Creative’ AlphaZero leads way for
chess computers and, maybe, science

Former chess workd champion Garry Kasparov likes what he
eesof computer that could be used to find cures for diseases

e faces show how far Al i image generation has
nced in just four years

How an A.l ‘Cat-and-Mouse Game’
Generates Believable Fake Photos

By CADE METZ asst KEITH COLLING JAN 2 3008

Stock Predictions Based On Al: Is the Market
Truly Predictable?

Neural networks everywhere
3 M L New chip reduces neural networks' power consumption by up 1o 95 percent, making
p them practical for battery-powered devices.

by wator - Digital Reporter - W (B

After Millions of Trials, These Simulaiéd Humans
Learned to Do Perfect Backflips and Cartwheels

s)
Automation And Algonthm
De-Risking Manufacturing With
Artificial Intelligence

- \ Sarah Goshrke
_’ \
PR — ‘

ASP 13, TH plex

* Researchersintroducea decp tearning method

- T that copverts mono audio recordmgs into 3D B TWEET This
Google's DeepMmd aces protein folding seunds usingvideo scenes . The two key applications 6f Al i manufactring ars pricing and
£l e n'-a'ufa urability fa adb ad‘

By Robert F. Service

What is Deep Learning?

Why Deep Learning and Why Now!?

Why Deep Learning!?

Hand engineered features are time consuming, brittle and not scalable in practice

Can we learn the underlying features directly from data?

Low Level Features Mid Level Features High Level Features

Lines & Edges Eyes & Nose & Ears Facial Structure

1952

1958

1986

1995

Stochastic Gradient
Descent

Perceptron
* Learnable Weights

Backpropagation
e Multi-Layer Perceptron

Deep Convolutional NN
* Digit Recognition

Why Now?

|. Big Data

e Larger Datasets
e FEasier Collection

& Storage
IMJSAGENE
Q “j @;\@j ® @%
WIKIPEDIA . ®/@ N @ @f

The Free Encyclopedia

2. Hardware

» Graphics
Processing Units
(GPUs)

* Massively
Parallelizable

Neural Networks date back decades, so why the resurgence!?

3. Software

* Improved
Techniques

e New Models
e Toolboxes

The Perceptron
The structural building block of deep learning

The Perceptron: Forward Propagation

Linear combination
Output of inputs

w. Non-linear
activation function
X

Inputs Weights Sum Non-Linearity Output

xl W\‘

m

Inputs

0

2

W/'
X
2 /
X

Weights

Sum

X — W

Non-Linearity

The Perceptron: Forward Propagation

Linear combination
Output of inputs

| | n |
y=49 WO"'zxiWi
\i=1

Non-linear Bias
activation function

)

Output

The Perceptron: Forward Propagation

0

xl W\’

BT W 7= g (worXTW)
X2 W, X1 Wy
where: X = andW = | :
xm Wm
X

m

Inputs Weights Sum Non-Linearity Output

The Perceptron: Forward Propagation

Activation Functions

1
0
U — T
y=g(wo+tX™W)
X1 W\’
{ e E le: si id functi
W/, Z — / % xample: sigmoid unc’uoln
X _ _
| / gz)=0(2) 1 +e %
xm _,,,..-/ fﬁ,ﬂ//

0.5

Inputs Weights Sum Non-Linearity Output

0.8

0.6

0.4

0.2

Common Activation

Sigmoid Function

9(2) T
g'(2) d
P4
F
P

—
5 0

(2)= —

zZ)= ————

g 1+ e~%

g' (z)= g1 -g(2)

P Q

s tf.nn.sigmoid(z)

Hyperbolic Tangent

/ 9@
0.5} / / g@]| -
/ / \‘.‘
A /
G b—— / S
/
/
-0.5 | /
7
-1 — -
-5 0 5
et —e %
(z) =
g e? + e %

NOTE: All activation functions are non-linear

Functions

Rectified Linear Unit (RelLU)

5
4 35(22)) '
3 ,//
2 /
1 'v
. V/
-5 0 5
g(z)=max (0, z)
'(2) = 1, z >0
9 1o, otherwise

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

% o A J
09t ;‘o.“o’o 3} A

08t

L]
07F %..0.0. o7 & %o g°gg%% 8§%?0% :
()

06

e ® o ® 8 '
® 000, & 3 09
v %;’:?w ‘.’, *%3 ©.% .ogo..
05 P %° < o
Mo o 0 JP &% g% 0
X I e °‘°o $°0 ° o
% o e o eo ® oo m
04 .!l % .“x &I 1 o L K)
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 08 1

What if we wanted to build a Neural Network to
distinguish green vs red points?

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

09
08
07r
06

05

04

Linear Activation functions produce linear
decisions no matter the network size

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

09
08
07r
06

05

04

Linear Activation functions produce linear Non-linearities allow us to approximate
decisions no matter the network size arbitrarily complex functions

The Perceptron: Example

We have: wyg =1 and W = l_gzl

1 1
\)7=9(W0+XTI;V)
X1 L n — /S y =g(1+[§;][32])
/ y=9g(1+3x,—2x3)
X, \ ~ J

This is just a line in 2D!

The Perceptron: Example

AX2 fQ

1 1 Y &

\ /t\j""\'
X1 3 > Z — / 5} jX”‘DArN

/ / ~ X1
X5 | / _

/
/

The Perceptron: Example

AX2 f

1 1 —1 /Ar‘\{/Q

S e g
X1 L x — /S y j"%p

/ < i /
X9 /

. -1 ’
Assume we have input: X = [5] /
Py =g(1+ @B*x—1D)—(2%2))

g (—=6) ~ 0.002

The Perceptron: Example

AX2 ’
Q
1 1 z <0 /Arq{/
y < 0.5 /’\f
3 X -
X1) — / y _/X%
/ < l :/ N X1
X9 /]
/ z >0
/ y > 0.5

Building Neural Networks with Perceptrons

The Perceptron: Simplified

0

W/'
X
2 /
X

m

)

Inputs Weights Sum Non-Linearity Output

The Perceptron: Simplified

Multi Output Perceptron

X1
y1 = 9(z1)
Z]_ >
X2
v, = 9(z3)
ZZ >
Xm

m
Zi = Wp; + z 1xj Wj i
]:

Single Layer Neural Network

w® w®
9(z1)
Zq
X1
9(z3) %
) Y1
X2
YA 3 y
3 9(z3) yZ
xm
Z
U g(za)
Inputs Hidden Final Output

m d

@ CO N 2 !
Zi =Wy, + E i XjWiiw Ji=g <W(§,i) + E _ Vi

=]:

(2)

)

Single Layer Neural Network

Z
Z2 V1
Z3 V2
Zq,

zp = woy + Z:nzl X w,-(;)

1 1 1 1
= Wé}z) + X4 Wl(lz) + Xy Wz(,z) + Xm W,(n)2

Multi Output Perceptron

’*“ from tf.keras.layers import *

inputs Inputs (m)

hidden Dense (d;) (inputs)
outputs = Dense (2) (hidden)
Zl model = Model (inputs, outputs)
X1
Z3 Y1
:
Z3 Y2
xﬁn.
Zd1

Inputs Hidden Output

Deep Neural Network

Zk,1
X1
Zk,2 1
xz o T
Zk,3 V2
xm
Zk,dy,
Inputs Hidden Output

Applying Neural Networks

Example Problem

WIll | pass this class!

Let’s start with a simple two feature model

x1 = Number of lectures you attend

X, = Hours spent on the final project

Example Problem: Will | pass this class!?

X, = Hours
spent on the
final project

x1 = Number of lectures you attend

Example Problem: Will | pass this class!?

X, = Hours
spent on the
final project

x1 = Number of lectures you attend

Example Problem: Will | pass this class!?

x(l) = [4 ,5] Zy V1 Predicted: 0.1

Example Problem: Will | pass this class!?

1) __ " Predicted: 0.1
2 = [4,5] 2 Y1 Actual 1

Quantifying Loss

The loss of our network measures the cost incurred from incorrect predictions

Zq
| A .
[4,5] 7 B hcal
.
Z3

L (f (x(i); W), y(i))

Predicted Actual

Empirical Loss

The empirical loss measures the total loss over our entire dataset

f(x)

- - Z _
L) @
X = , - 08
5. 8 %2 06
P *2 :
IR ” B

1~ . .
e T =L (0w, y0)

Objective function n .
° [l
Cost function

* Empirical Risk Predicted Actual

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between O and |

— — Z1 _f(x)_ _ Y _
45 0.1 |
_ 2, | . 0.8 0
X .
5 8 Z) Y1 06 |
. X2 . .
__ — Z3 | ’ - L) —

JW) = %z:;ly(i) log (f(x(i); W)) +(1—-y®D)log (1 — f(x(i); W))

Actual Predicted Actual Predicted

P

"8 loss = tf.reduce mean(tf.nn.softmax cross_entropy with logits (model.y, model.pred))

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

, f0)
_ 1 SV
4ol g 30| |90
_ 2, | N 80 20
X
5, 8 “ L les| |95
: X2 . .
) ” R RN
1" . . 2] }
W) = — () _ ©. w Final Grades
Jw) n zi=1 (L f(x)) (percentage)

Actual Predicted

&

. loss = tf.reduce mean(tf.square(tf.subtract (model.y, model.pred))

Training Neural Networks

Loss Optimization

We want to find the network weights that achieve the lowest loss

1~ . .
W* = argmin — E L(f(x(‘); W),y(‘))
w n i=1

W* = argmin J(W)
w

Loss Optimization

We want to find the network weights that achieve the lowest loss

n

1 . .
W = i —E L(f(xW;w),yW
arg';/mnn . (f(x)y)

W* = argmin J(W)
w

|

Remember:
W = {W(O), W(l)’ }

Loss Optimization

W* = argmin J (W)
w

Remember:
Our loss is a function of
the network weights!

](WOJ Wl) |

Loss Optimization

Randomly pick an initial (wq, wy)

](W0' Wl) |

Loss Optimization

. W)
Compute gradient, W

](WOJ Wl) |

Loss Optimization

Take small step in opposite direction of gradient

](WOJ Wl) |

Gradient Descent

Repeat until convergence

](WOJ Wl) '

Gradient Descent

Algorithm

.
2.
3.

4.
d.

Initialize weights randomly ~N (0,

Loop until convergence:

oj(W)
ow

Update weights, W « W —n

Compute gradient,

Return welights

d?)

oj(W)
ow

«>

Sy

Y

*T\ weights new = weights.assign(weights — lr * grads)

weights = tf.random normal (shape, stddev=sigma)

grads = tf.gradients (ys=loss, xs=weights)

Gradient Descent

Algorithm

.
2.
3.

4.
d.

Initialize weights randomly ~N (0,

Loop until convergence:

oJj(W)
ow

Update weights, W « W —n

Compute gradient,

Return welights

d?)

oj(W)
ow

«>

Sy

Y

*T\ weights new = weights.assign(weights — lr * grads)

weights = tf.random normal (shape, stddev=sigma)

grads = tf.gradients (ys=loss, xs=weights)

Computing Gradients: Backpropagation

How does a small change in one weight (ex. w,) dffect the final loss J(W)!

Computing Gradients: Backpropagation

X >z > 9 > J(W)

oJj(W)

aWZ

\

Let's use the chain rule!

Computing Gradients: Backpropagation

Yw) _ogw) oy

dw, ay odw,

Computing Gradients: Backpropagation

Yw) _ogmw) 9y

owq ay owq

| — =T

Apply chain rule! Apply chain rule!

Computing Gradients: Backpropagation

Jw) _gmw) 33 oz

dwq ay 074 dwq

Computing Gradients: Backpropagation

Jyw) _gmw) 3 oz

dwq ay 074 dwq

Repeat this for every weight in the network using gradients from later layers

Neural Networks in Practice:
Optimization

Training Neural Networks is Difficult

“Visualizing the loss landscape
of neural nets”. Dec 201 7.

Loss Functions Can Be Difficult to Optimize

Remember:
Optimization through gradient descent

Loss Functions Can Be Difficult to Optimize

Remember:
Optimization through gradient descent

How can we set the
learning rate?

Setting the Learning Rate

Small learning rate converges slowly and gets stuck in false local minima

Jw),,

\ Initial guess

Setting the Learning Rate

Large learning rates overshoot, become unstable and diverge

Jw),,

\ Initial guess

Setting the Learning Rate

Stable learning rates converge smoothly and avoid local minima

J(6) .,

\ Initial guess

How to deal with this?

ldea |:

Try lots of different learning rates and see what works “just right”

How to deal with this?

ldea 2:

Do something smarter
Design an adaptive learning rate that “adapts’ to the landscape

Adaptive Learning Rates

* Learning rates are no longer fixed

* (Can be made larger or smaller depending on:

* how large gradient is

* how fast learning is happening
* size of particular weights

* elc..

Adaptive Learning Rate Algorithms

| . = Qian et al.“On the momentum term in gradient
Momentum T Cf-train.MomentumOptimizer descent learning algorithms.” 1999

&

Duchi et al."Adaptive Subgradient Methods for Online

Ad agrad) SIS EE RN CEIEE0, Sleun A e Learning and Stochastic Optimization.’ 201 I.
o f train AdadeltaCotin Zeller et al."ADADELTA: An Adaptive Learning Rate
AC adelta S .train.AdadeltaOptimizer Method” 2017,

AC am /’s £ train. AdanOptintizer (K;nglma} etlal."‘:A\dam:A Method for Stochastic
: ptimization.” 2014.

RM S Pro , ’? tf.train.RMSPropOptimizer

Neural Networks in Practice:
Mini-batches

Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

oJj(W)
ow

3. Compute gradient,

oJj(w)
ow

4 Update weights, W « W —n

5. Return weights

Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3 Compute gradient, a];;l;) ~
4 Update weights, W « W —n a]a(;l/,)
5. Return weights
Can be very

computational to
compute!

Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick single data point i

4 - dJi(W)
Compute gradient, W

>. Update weights, W « W —n a]a(;l;)

6. Return weights

Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick single data point i

4 L O0Li(W)
Compute gradient, e

>. Update weights, W « W —n a]a(:z)

6. Return weights

Easy to compute but
very noisy
(stochastic)!

Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick batch of B data points |

4 Compute gradient, a](W) = —Zk 161231”) ; I
>. Update weights, W « W —n a](W)

6. Return weights

Stochastic Gradient Descent

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Pick batch of B data points |
4 Compute gradient, a](W) = —Zk 161(’;3,4,) f
>. Update weights, W « W —n a]a(w

6. Return weights

Fast to compute and a much better
estimate of the true gradient!

Mini-batches while training

More accurate estimation of gradient
Smoother convergence
Allows for larger learning rates

Mini-batches while training

Mini-batches lead to fast training!
Can parallelize computation + achieve significant speed increases on GPU's

Neural Networks in Practice:
Overdfitting

The Problem of Overfitting

Underfitting < Ideal fit > Overfitting
Model does not have capacity Too complex, extra parameters,
to fully learn the data does not generalize well

Regularization

What is it?

lechnique that constrains our optimization problem to discourage complex models

Regularization

Why do we need it?

Improve generalization of our model on unseen data

Regularization |: Dropout

* During training, randomly set some activations to O

Z11 Z21
X1

Z12 Z32
X2

Z1,3 Z23
X3

Regularization |: Dropout

* During training, randomly set some activations to O
* Typically ‘drop’ 50% of activations in layer -~

? " tf.keras.layers.Dropout (p=0.5)

* [orces network to not rely on any | node

Z21
X1
Z12 Y1
X2
Zy3 Y2
X3

Regularization |: Dropout

* During training, randomly set some activations to O
* Typically ‘drop’ 50% of activations in layer -~

? " tf.keras.layers.Dropout (p=0.5)

* [orces network to not rely on any | node

Z11
X1
Z2 2 Y1
X2
Z13 Z23 Y2
X3

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

|.oss

Training lterations

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

|
\ Legend

L oss Testing

Training

Training Iterations

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Legend

Loss Testing

T?anmg

Training Iterations

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Legend

L oss Testing

T?anmg

Training Iterations

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Legend

L oss Testing

4__———”’4. Training

—(O==

Re

Training Iterations

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Legend

Loss / Testiﬂg
Training

O o

—0— —0 ,

Training Iterations

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

Legend

Stop training Testing
het”e!/./. =
ig Training

|.oss

—Q— —0

Training Iterations

Regularization 2: Early Stopping

* Stop training before we have a chance to overfit

A

i
Under-fitting | Over-fitting

l |
|
| Legend
|
| -

Loss | Stop training Testing
| here! i
.' g Training
|
|
—0- —0

Training Iterations

Core Foundation Review

The Perceptron Neural Networks Training in Practice

 Structural building blocks Stacking Perceptrons to * Adaptive learning
* Nonlinear activation form neural networks * Batching
functions * Optimization through * Regularization

backpropagation

X1 X, @ Q

\ a 9 2 v
X3 — Z —> f jl\ X2 x X x e x “ o B
/ Zk,3 V2 1 il :) 3?@ ~
x & ' g | o
i T, Wl s

Questions!

