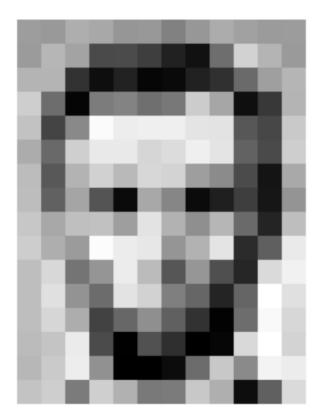
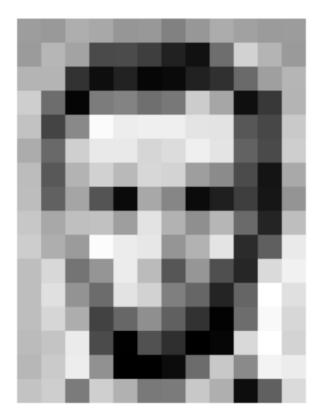
Deep Learning for Computer Vision

What Computers "See"

Images are Numbers

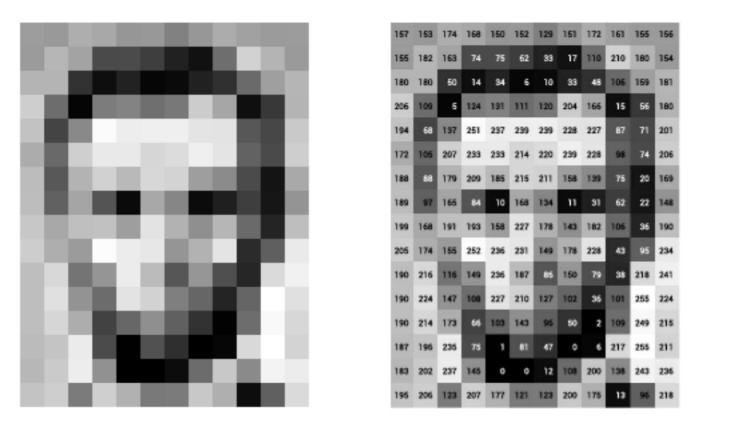


Images are Numbers



157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	169	181
206	109	5	124	191	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	\$1	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	٦	81	47	۰	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	95	218

Images are Numbers

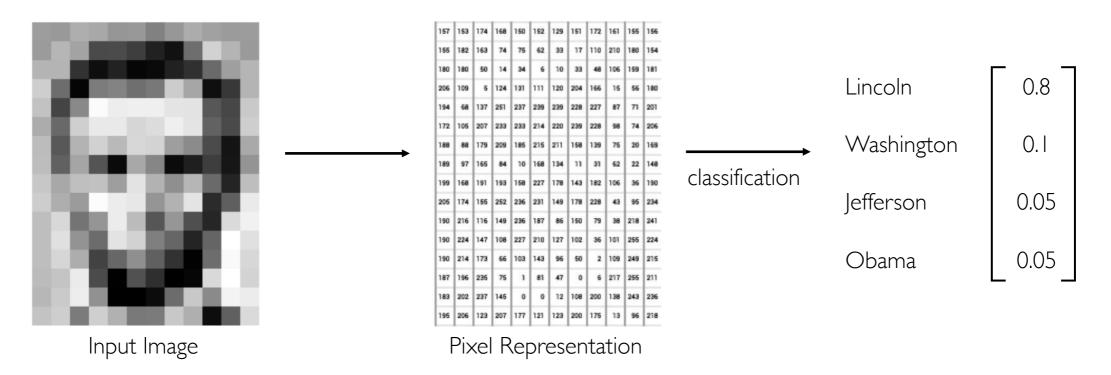


What the computer sees

	_	_			_	· ·		_			_
157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

An image is just a matrix of numbers [0,255]! i.e., 1080×1080×3 for an RGB image

Tasks in Computer Vision



- **Regression**: output variable takes continuous value
- Classification: output variable takes class label. Can produce probability of belonging to a particular class

High Level Feature Detection

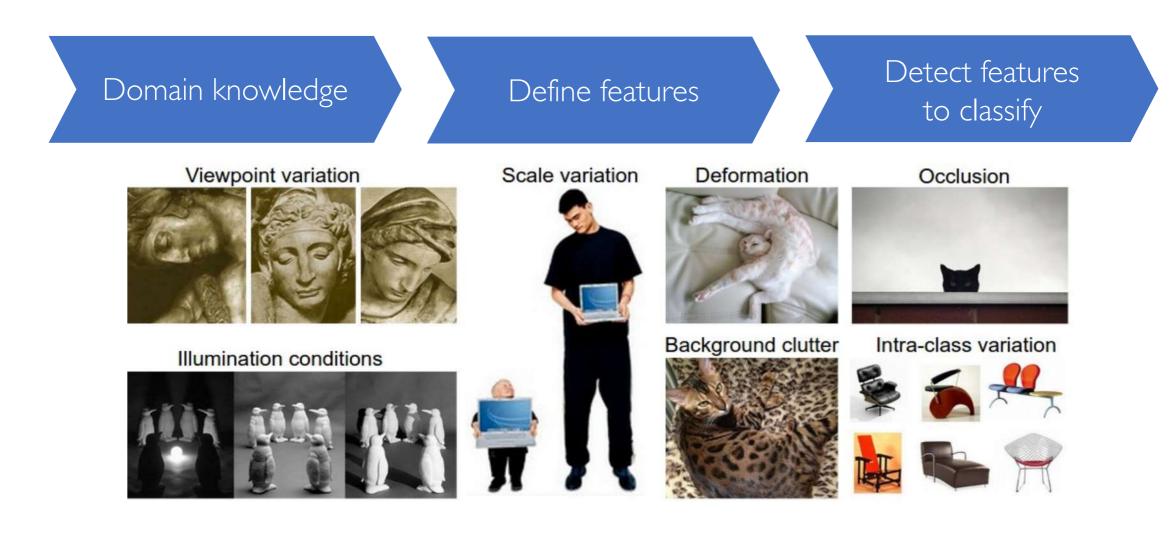
Let's identify key features in each image category

Nose, Eyes, Mouth Wheels, License Plate, Headlights Door, Windows, Steps

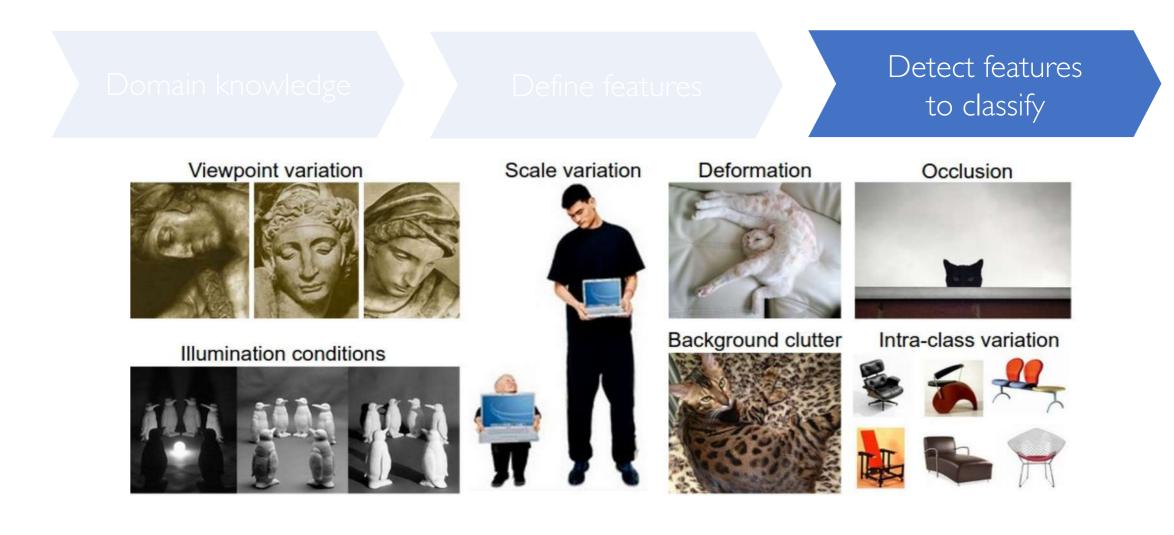
Manual Feature Extraction

Problems?

Manual Feature Extraction



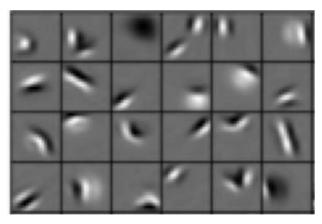
Manual Feature Extraction



Learning Feature Representations

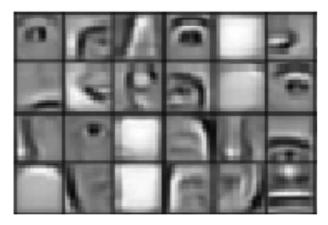
Can we learn a **hierarchy of features** directly from the data instead of hand engineering?

Low level features



Edges, dark spots

Mid level features



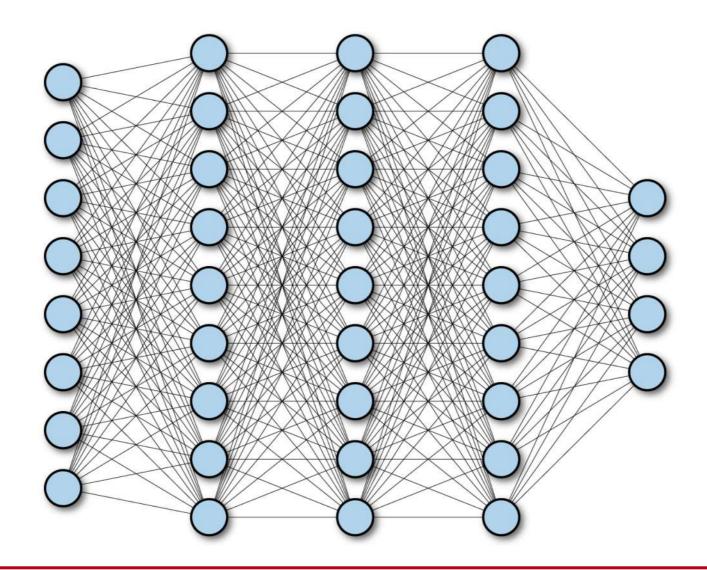
Eyes, ears, nose

High level features

Facial structure

Learning Visual Features

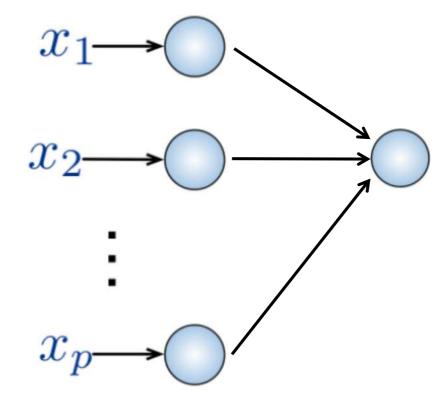
Fully Connected Neural Network



Fully Connected Neural Network

Input:

- 2D image
- Vector of pixel values



Fully Connected:

- Connect neuron in hidden layer to all neurons in input layer
- No spatial information!
- And many, many parameters!

Fully Connected Neural Network

Input:

- 2D image
- Vector of pixel values

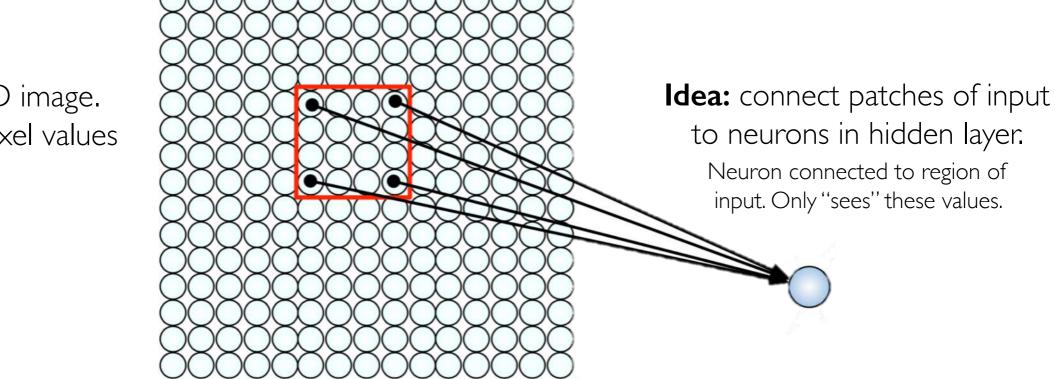


Fully Connected:

- Connect neuron in hidden layer to all neurons in input layer
- No spatial information!
- And many, many parameters!

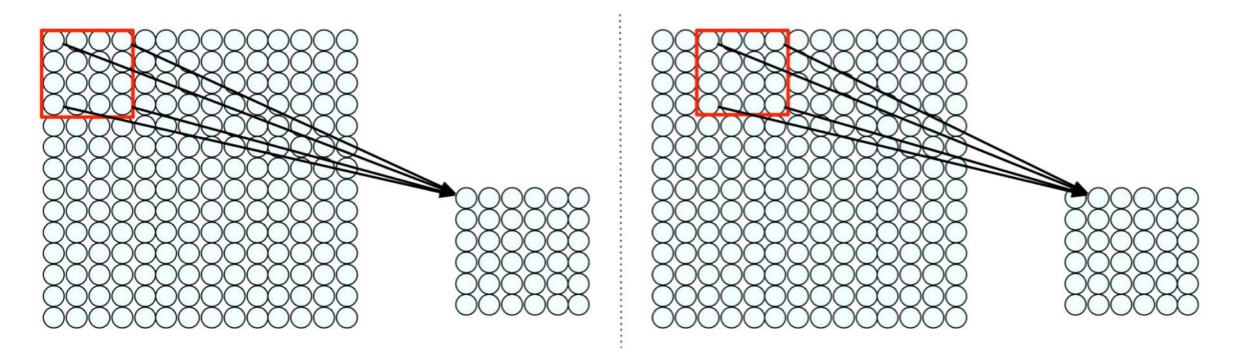
How can we use **spatial structure** in the input to inform the architecture of the network?

Using Spatial Structure



Input: 2D image. Array of pixel values

Using Spatial Structure



Connect patch in input layer to a single neuron in subsequent layer. Use a sliding window to define connections. How can we **weight** the patch to detect particular features?

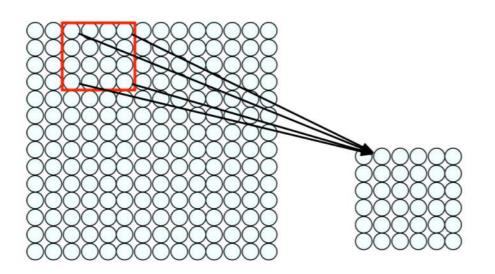
Applying Filters to Extract Features

1) Apply a set of weights – a filter – to extract local features

2) Use **multiple filters** to extract different features

3) Spatially **share** parameters of each filter (features that matter in one part of the input should matter elsewhere)

Feature Extraction with Convolution



- Filter of size 4x4 : 16 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This "patchy" operation is **convolution**

I) Apply a set of weights – a filter – to extract **local features**

2) Use multiple filters to extract different features

3) Spatially share parameters of each filter

Feature Extraction and Convolution A Case Study

X or X?

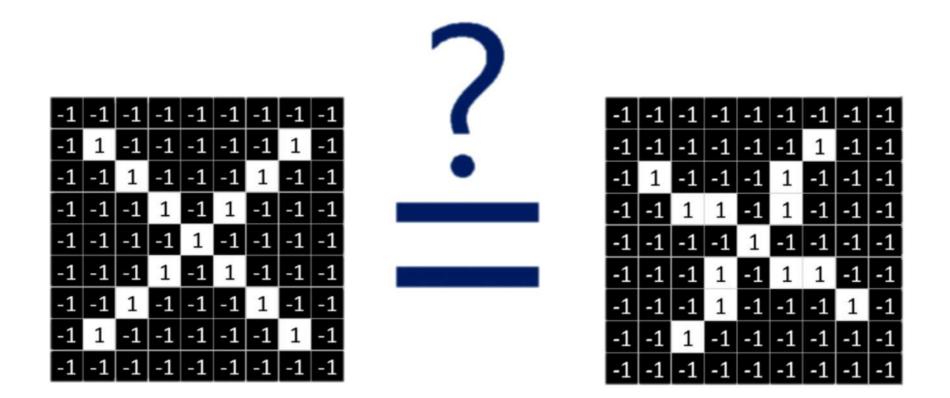
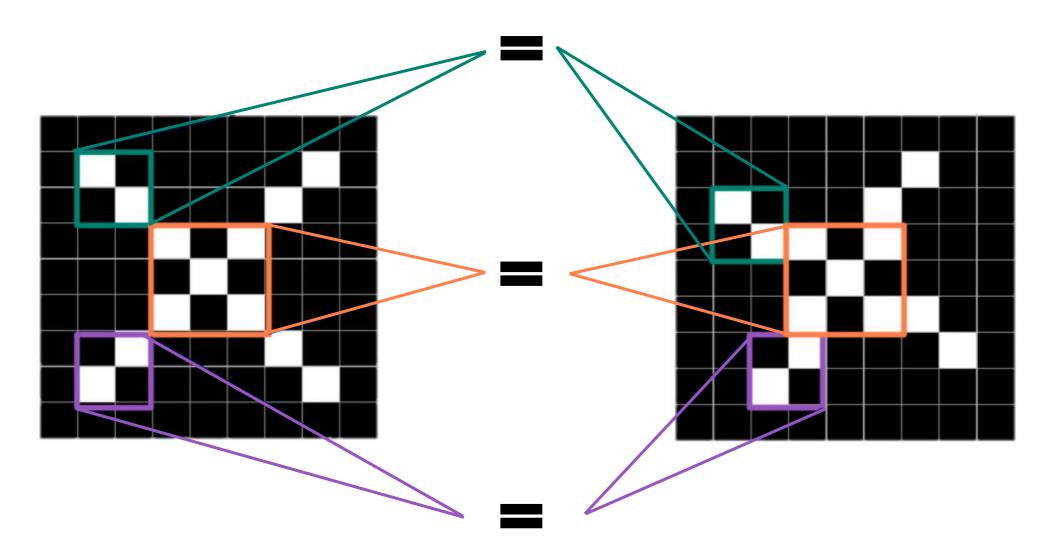
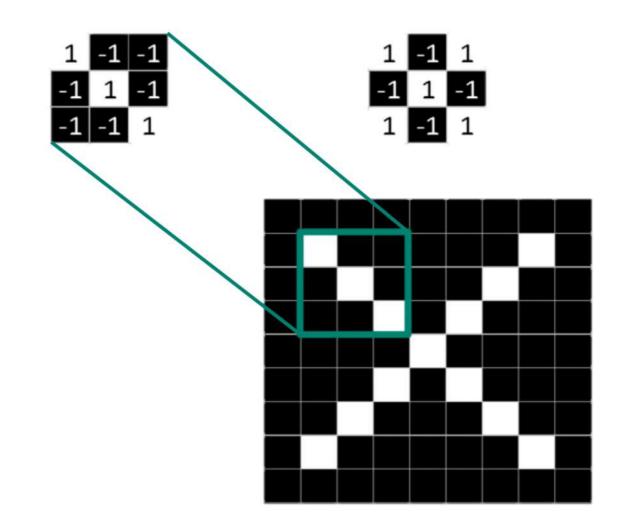


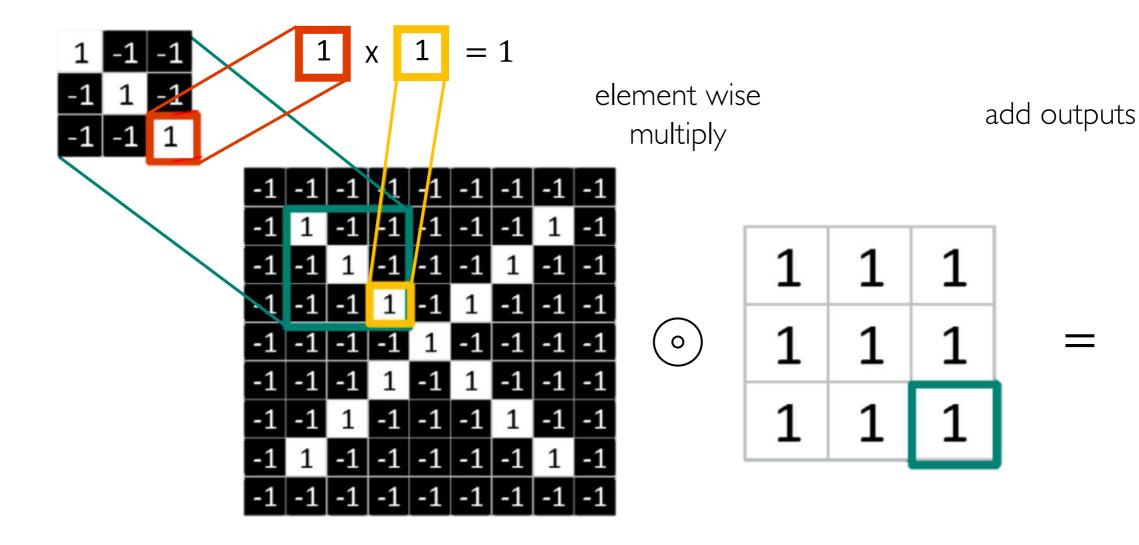
Image is represented as matrix of pixel values... and computers are literal! We want to be able to classify an X as an X even if it's shifted, shrunk, rotated, deformed.

Features of X



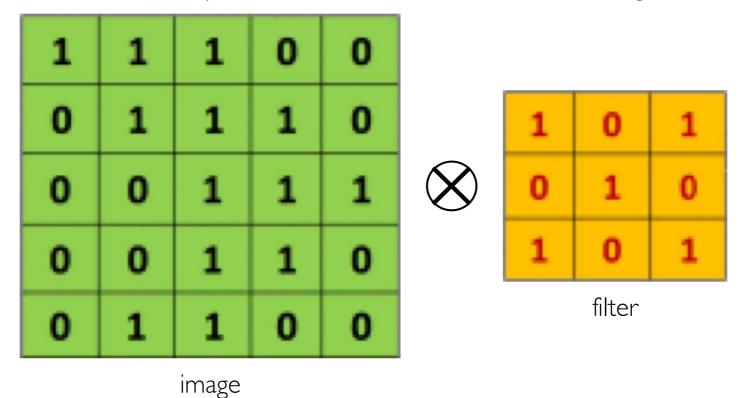
Filters to Detect X Features

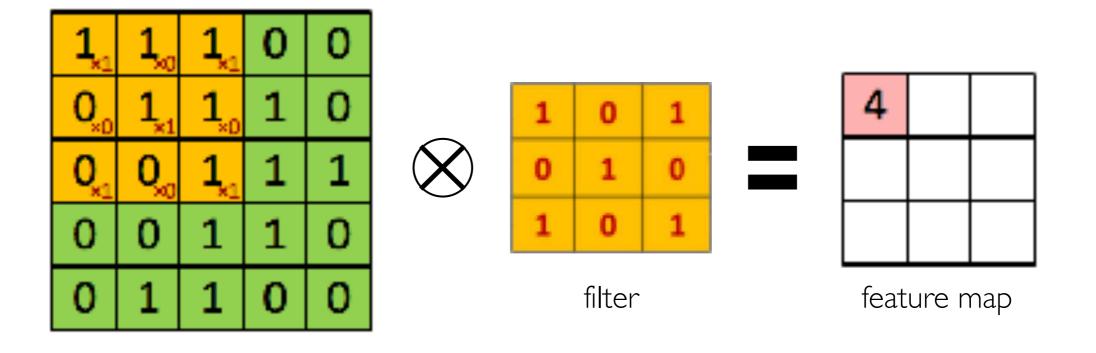


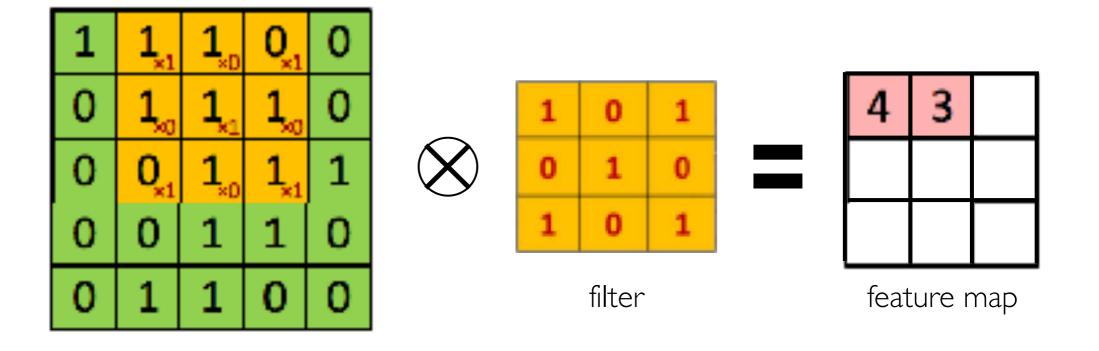


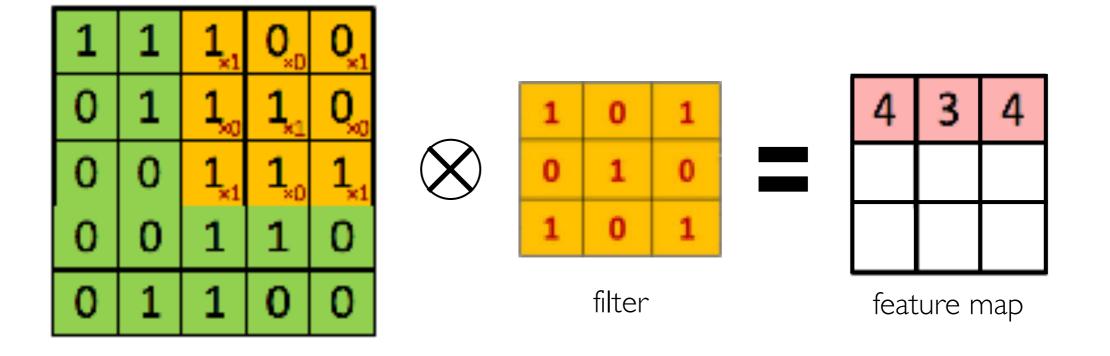
9

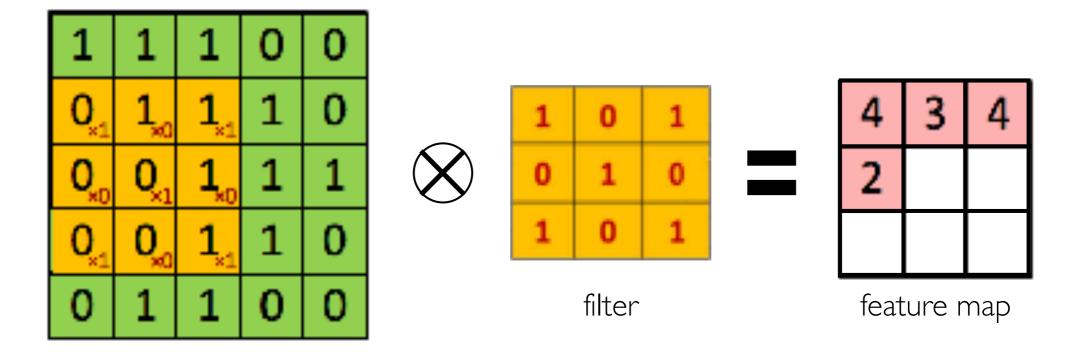
Suppose we want to compute the convolution of a 5x5 image and a 3x3 filter:

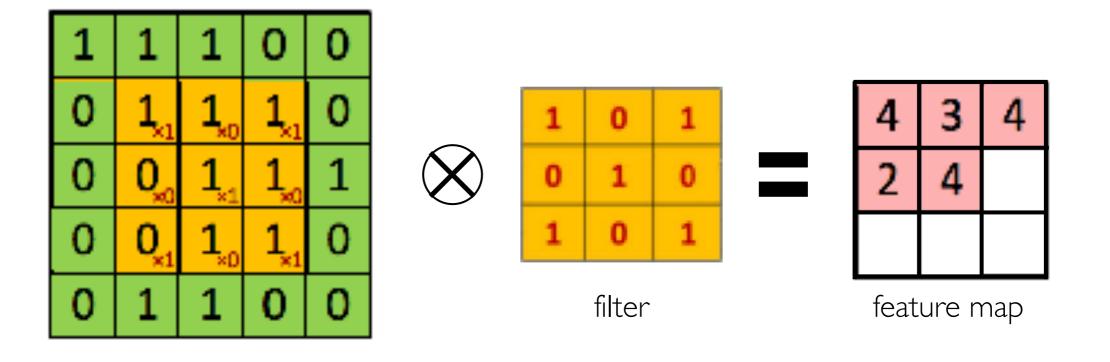


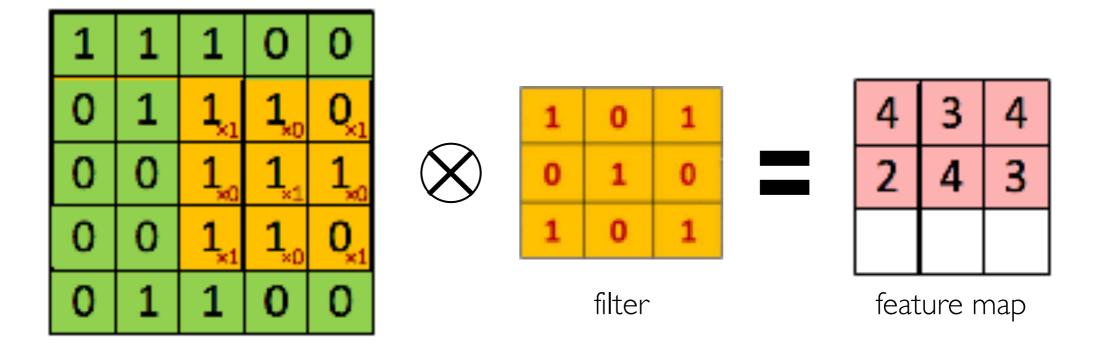


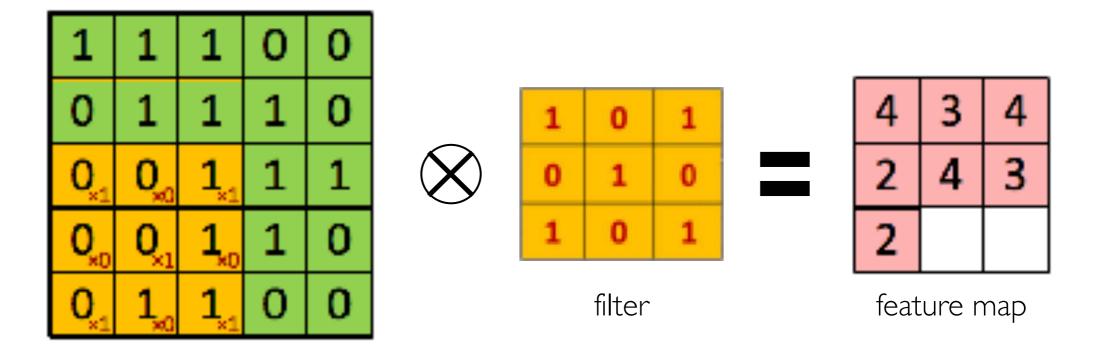


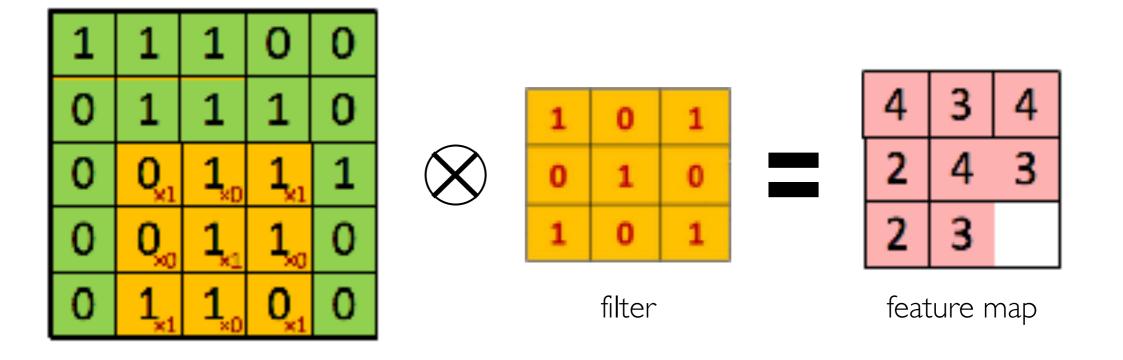


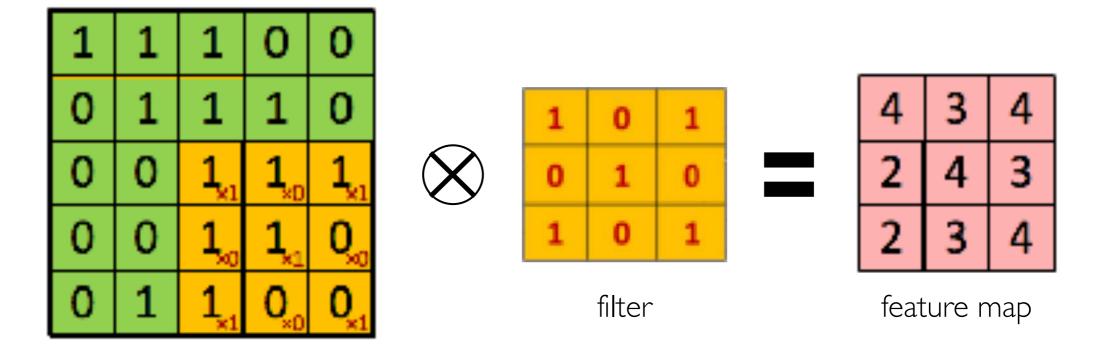






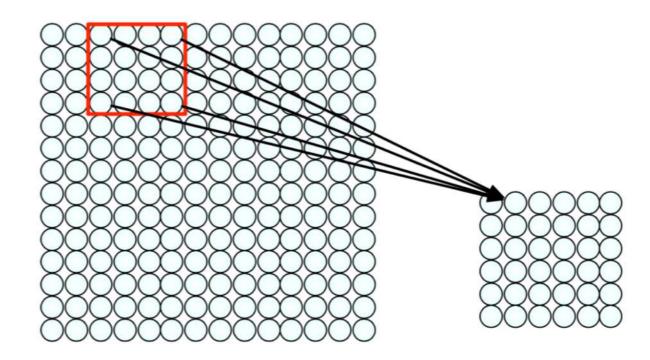






Producing Feature Maps

Feature Extraction with Convolution



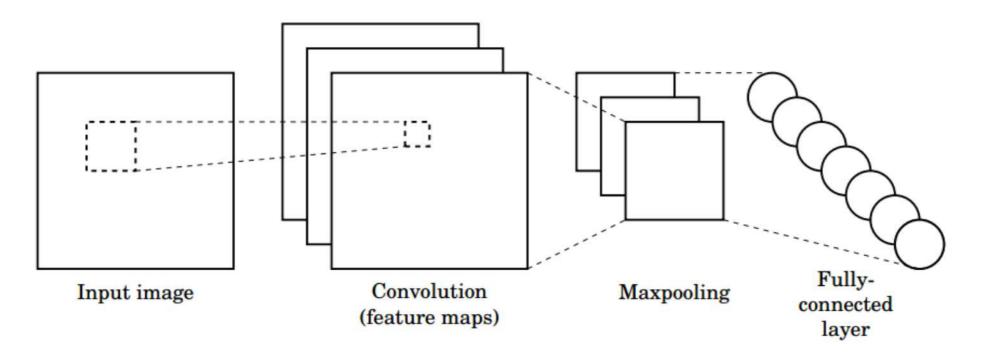
1) Apply a set of weights – a filter – to extract **local features**

2) Use multiple filters to extract different features

3) **Spatially share** parameters of each filter

Convolutional Neural Networks (CNNs)

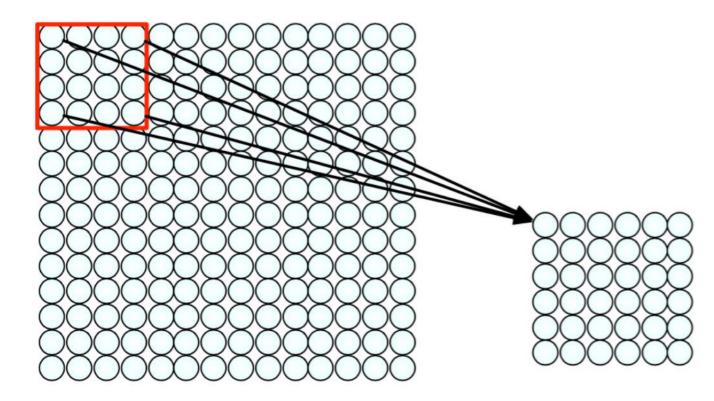
CNNs for Classification



- I. Convolution: Apply filters with learned weights to generate feature maps.
- 2. Non-linearity: Often ReLU.
- 3. Pooling: Downsampling operation on each feature map.

Train model with image data. Learn weights of filters in convolutional layers.

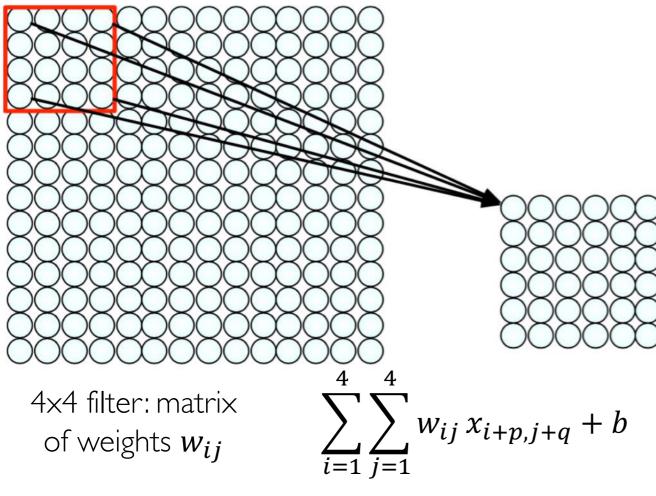
Convolutional Layers: Local Connectivity



For a neuron in hidden layer:

- Take inputs from patch
- Compute weighted sum
- Apply bias

Convolutional Layers: Local Connectivity



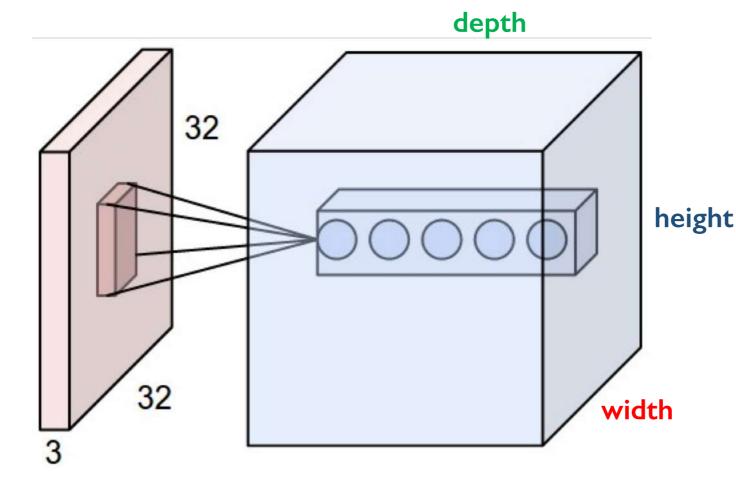
for neuron (p,q) in hidden layer

For a neuron in hidden layer:

- Take inputs from patch
- Compute weighted sum
- Apply bias

applying a window of weights
computing linear combinations
activating with non-linear function

CNNs: Spatial Arrangement of Output Volume



Layer Dimensions: h x w x d

where h and w are spatial dimensions d (depth) = number of filters

Stride:

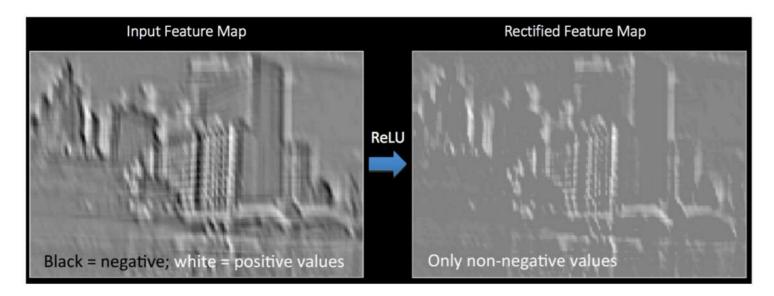
Filter step size

Receptive Field:

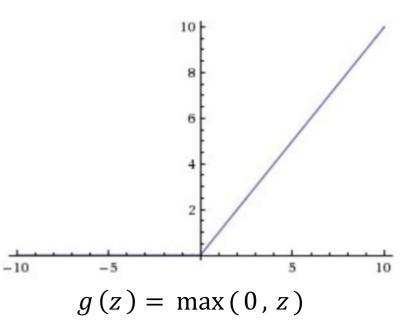
Locations in input image that a node is path connected to

Introducing Non-Linearity

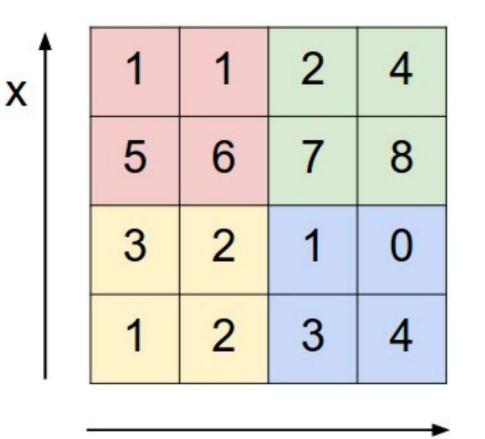
- Apply after every convolution operation (i.e., after convolutional layers)
- ReLU: pixel-by-pixel operation that replaces all negative values by zero. **Non-linear operation!**



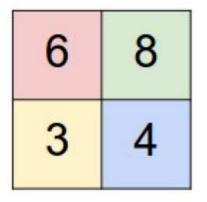
Rectified Linear Unit (ReLU)



Pooling



max pool with 2x2 filters and stride 2

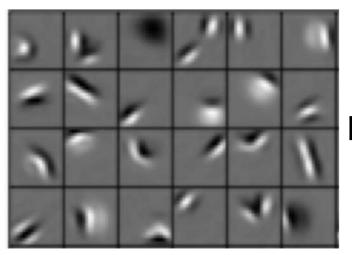


Reduced dimensionality
Spatial invariance

How else can we downsample and preserve spatial invariance?

Representation Learning in Deep CNNs

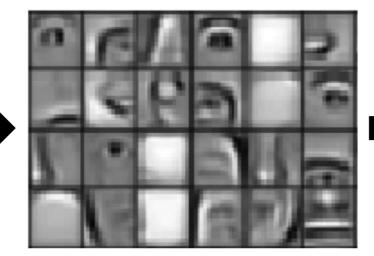
Low level features



Edges, dark spots

Conv Layer I

Mid level features



Eyes, ears, nose

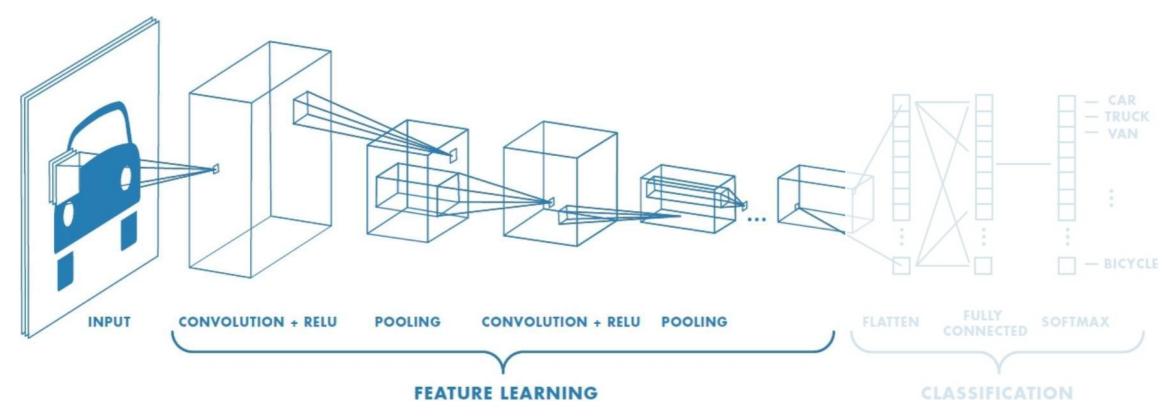
Conv Layer 2

High level features

Facial structure

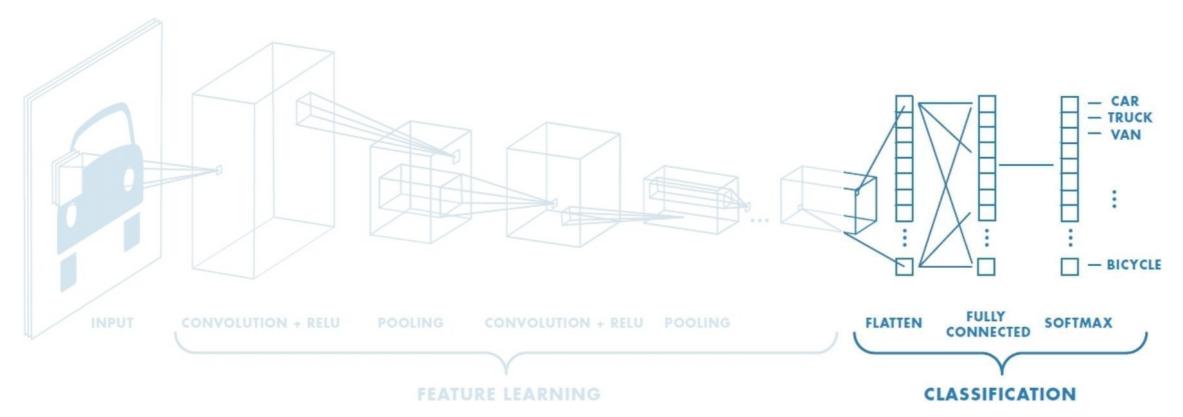
Conv Layer 3

CNNs for Classification: Feature Learning



- I. Learn features in input image through **convolution**
- 2. Introduce **non-linearity** through activation function (real-world data is non-linear!)
- 3. Reduce dimensionality and preserve spatial invariance with **pooling**

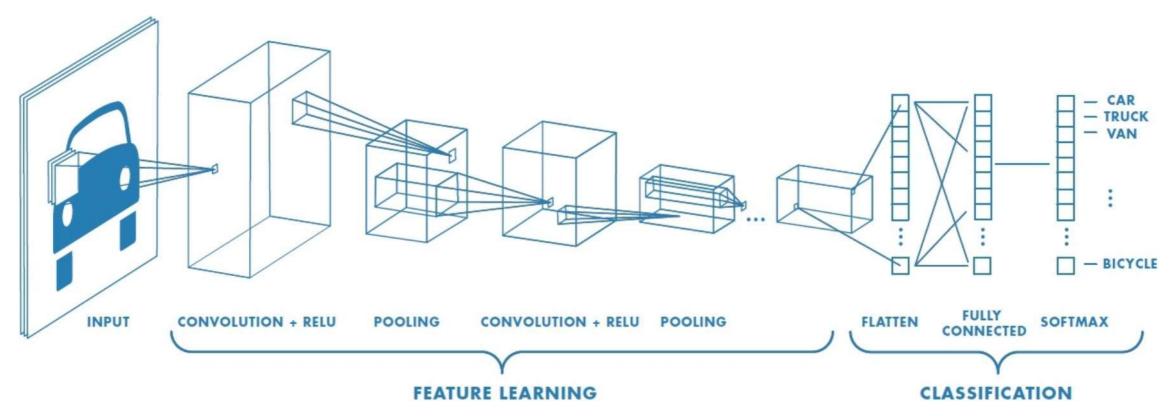
CNNs for Classification: Class Probabilities



softmax $(y_i) = \frac{e^{y_i}}{\sum_i e^{y_j}}$

- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as **probability** of image belonging to a particular class

CNNs:Training with Backpropagation



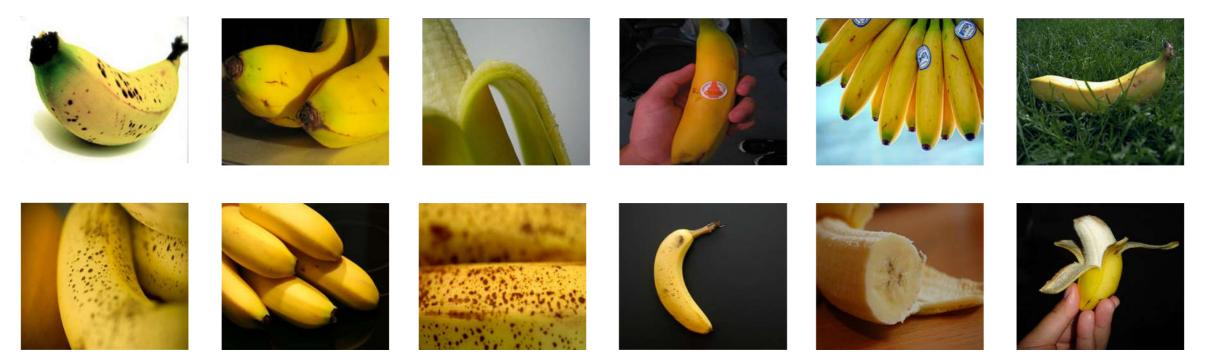
Learn weights for convolutional filters and fully connected layers Backpropagation: cross-entropy loss $J(\theta) = \sum_{i} y^{(i)} \log(\hat{y}^{(i)})$

CNNs for Classification: ImageNet

ImageNet Dataset

Dataset of over 14 million images across 21,841 categories

"Elongated crescent-shaped yellow fruit with soft sweet flesh"



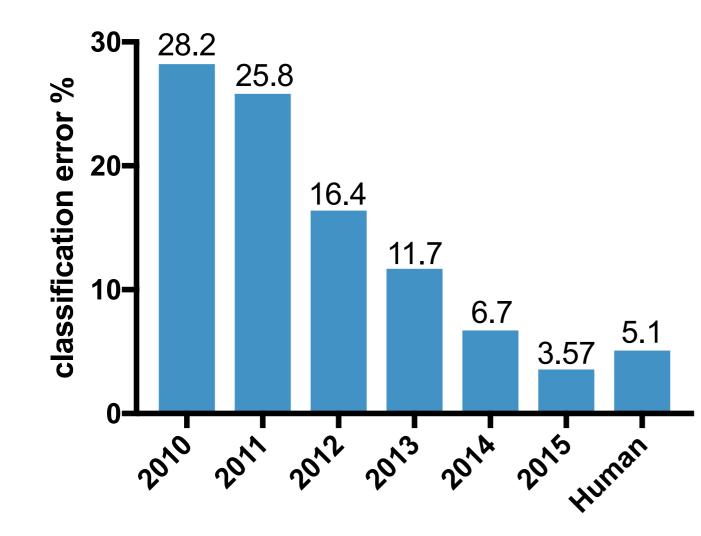
1409 pictures of bananas.

ImageNet Challenge

Classification task: produce a list of object categories present in image. 1000 categories. "Top 5 error": rate at which the model does not output correct label in top 5 predictions Other tasks include:

single-object localization, object detection from video/image, scene classification, scene parsing

ImageNet Challenge: Classification Task



2012: AlexNet. First CNN to win.

- 8 layers, 61 million parameters

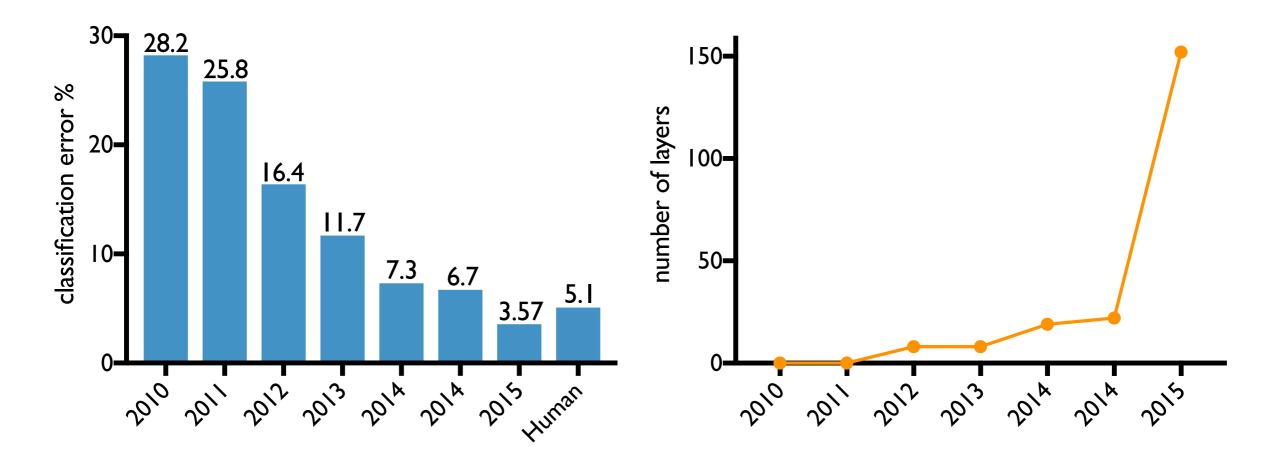
2013: ZFNet

- 8 layers, more filters **2014:VGG**
- 19 layers

2014: GoogLeNet

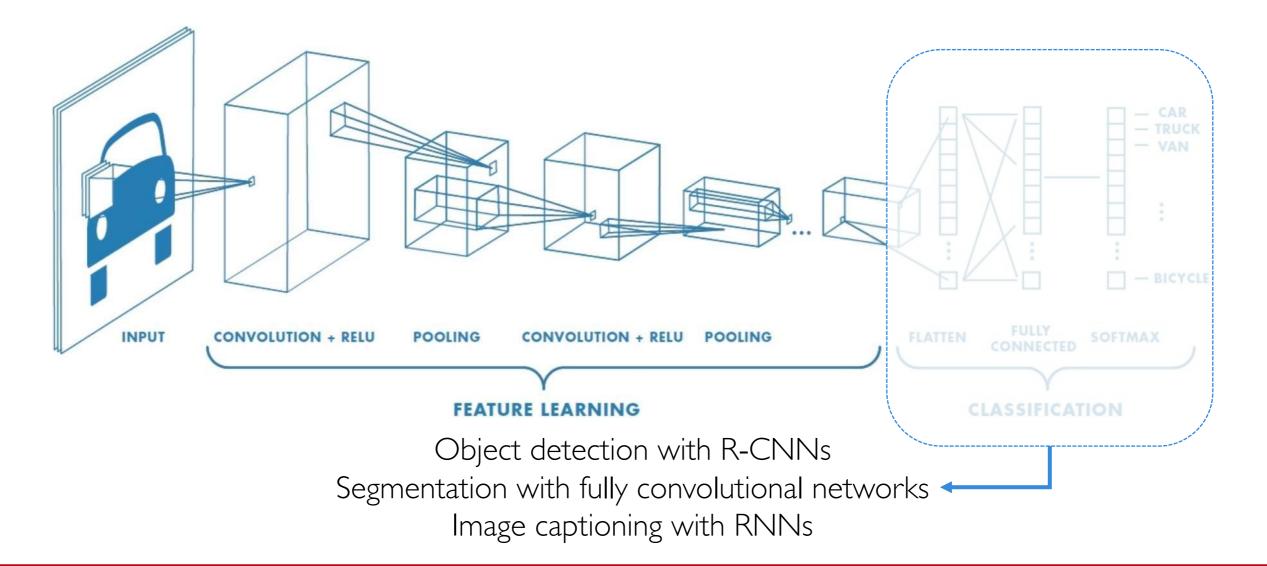
- "Inception" modules
- 22 layers, 5million parameters **2015: ResNet**
- 152 layers

ImageNet Challenge: Classification Task



An Architecture for Many Applications

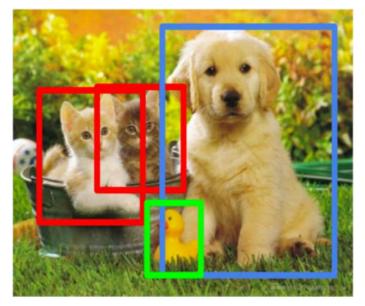
An Architecture for Many Applications



Beyond Classification

Semantic Segmentation

Object Detection



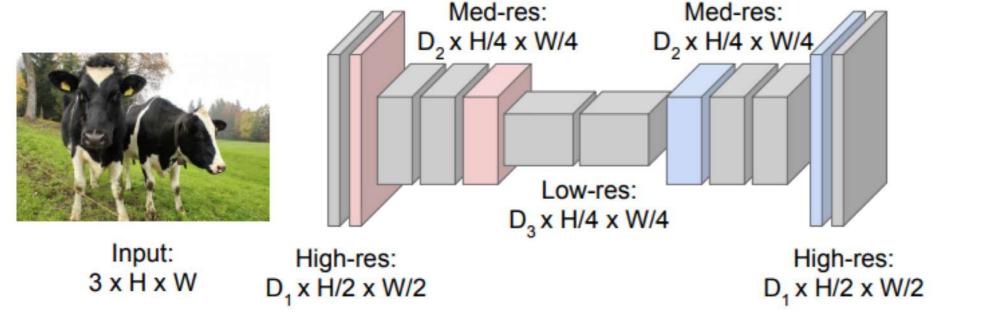
CAT, DOG, DUCK

Image Captioning

The cat is in the grass.

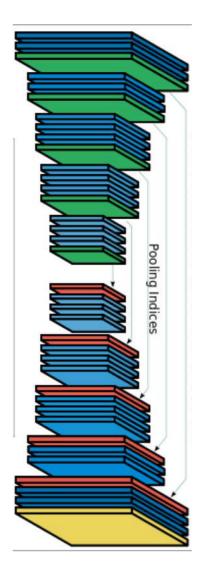
Semantic Segmentation: FCNs

FCN: Fully Convolutional Network. Network designed with all convolutional layers, with **downsampling** and **upsampling** operations

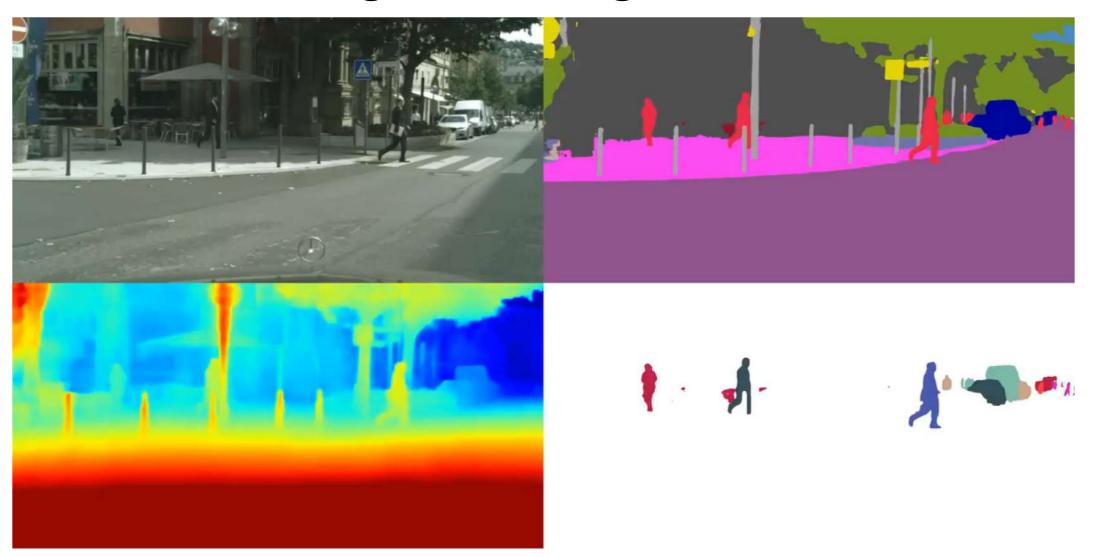


Predictions: H x W

Driving Scene Segmentation



Driving Scene Segmentation



Object Detection with R-CNNs

R-CNN: Find regions that we think have objects. Use CNN to classify.

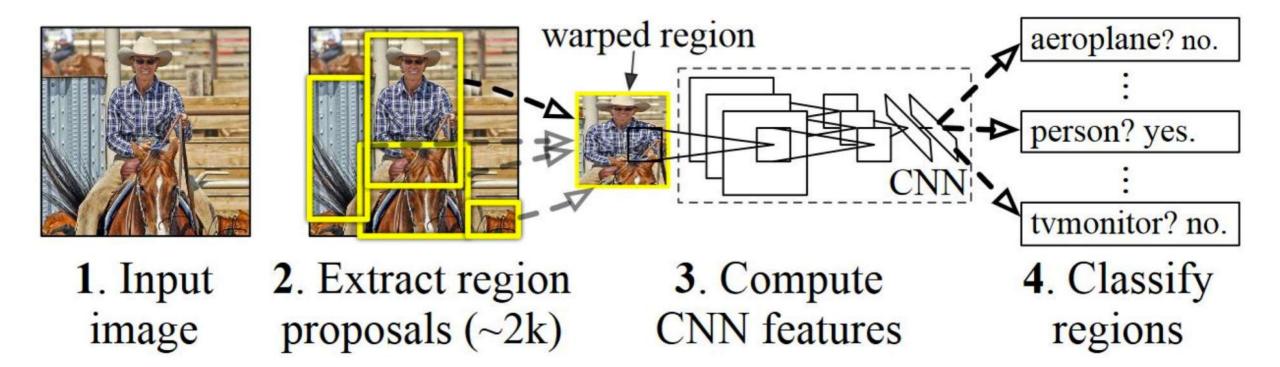
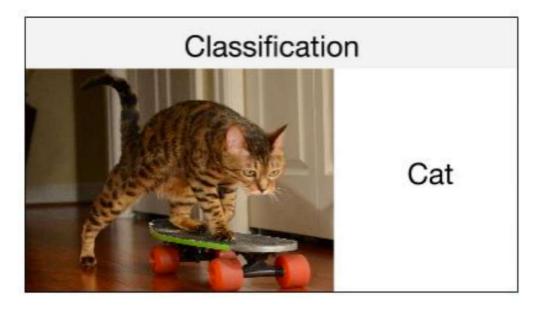
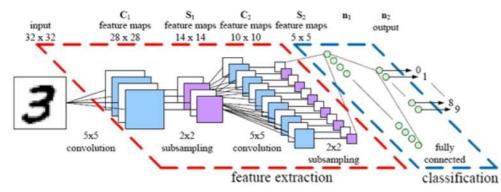
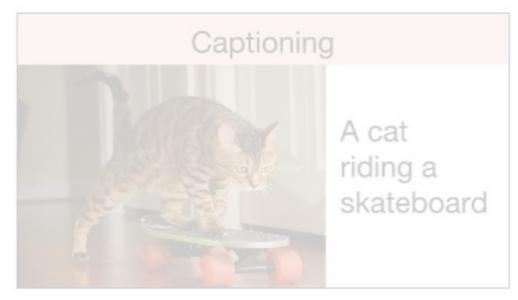


Image Captioning using RNNs







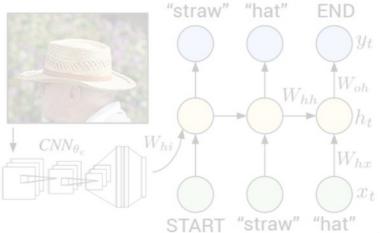
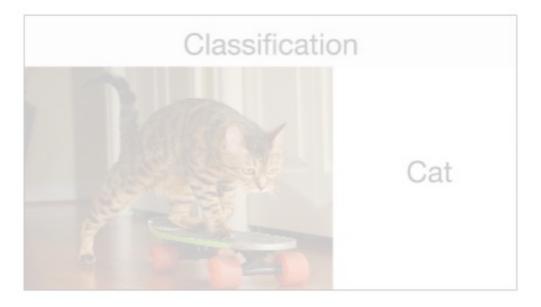
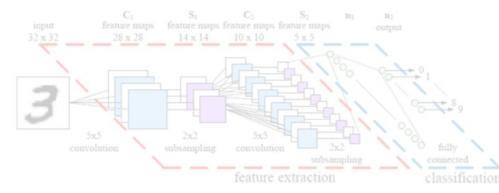
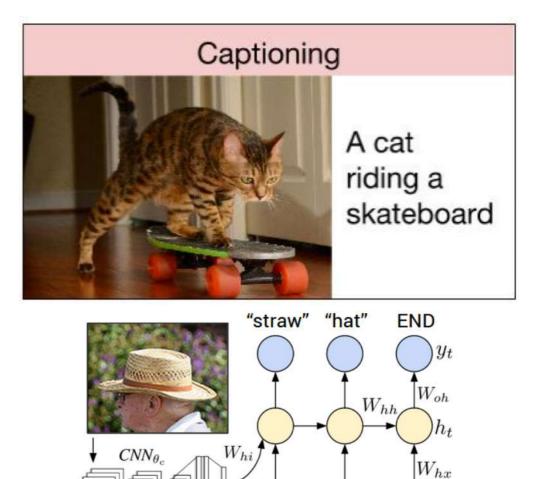


Image Captioning using RNNs







START "straw" "hat"

 x_t

Deep Learning for Computer Vision: Impact and Summary

Data, Data, Data

ImageNet: 22K categories. 14M images. Airplane

Automobile

Bird Cat Deer

Dog

Frog

Horse

Ship

Truck

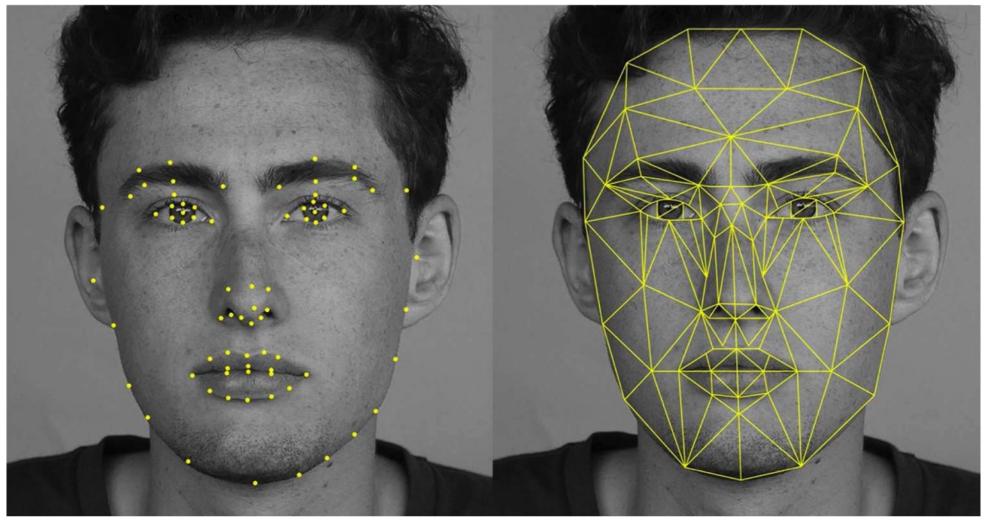
CIFAR-10

MNIST: handwritten digits

places: natural scenes

Deep Learning for Computer Vision: Impact

Impact: Face Detection

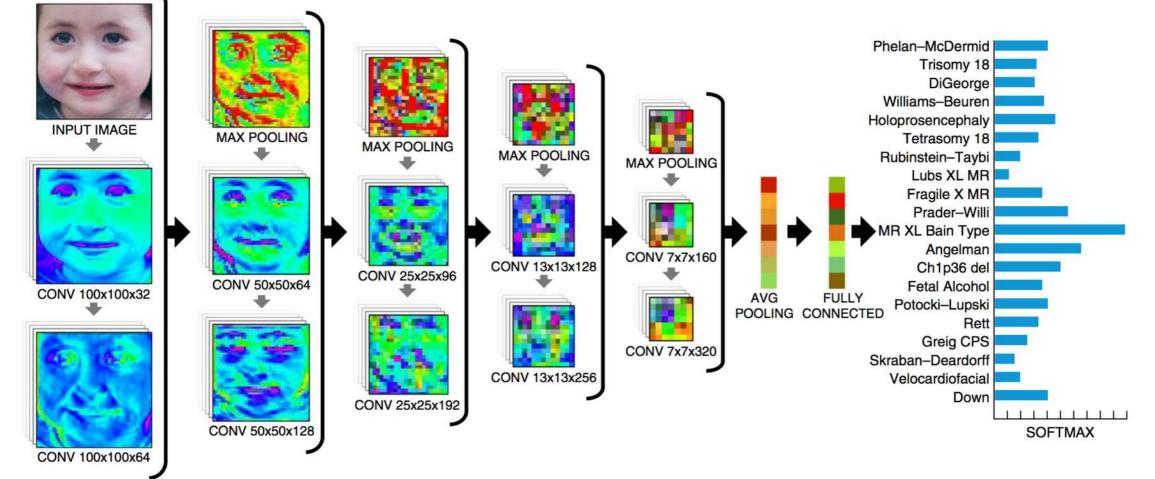


Impact: Self-Driving Cars

Impact: Healthcare

b

Identifying facial phenotypes of genetic disorders using deep learning Gurovich et al., Nature Med. 2019



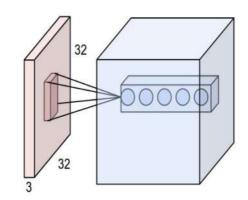
Deep Learning for Computer Vision: Summary

Foundations

- Why computer vision?
- Representing images
- Convolutions for feature extraction

CNNs

- CNN architecture
- Application to classification
- ImageNet



Applications

- Segmentation, object detection, image captioning
- Visualization

End of Slides