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What Computers “See”



   

Images are Numbers



   

Images are Numbers



   

Images are Numbers
What the computer sees

An image is just a matrix of numbers [0,255]!
i.e., 1080x1080x3 for an RGB image
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Tasks in Computer Vision

- Regression: output variable takes continuous value
- Classification: output variable takes class label. Can produce probability of belonging to a particular class
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High Level Feature Detection

Let’s identify key features in each image category

Wheels, 
License Plate, 
Headlights

Door, 
Windows, 

Steps

Nose, 
Eyes,

Mouth
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Manual Feature Extraction 

Problems?

Define featuresDomain knowledge Detect features 
to classify 
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Learning Feature Representations

Can we learn a hierarchy of features directly from the data 
instead of hand engineering?

Low level features Mid level features High level features

Eyes, ears, noseEdges, dark spots Facial structure

[3]
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Learning Visual Features



6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Fully Connected Neural Network
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Fully Connected Neural Network

Fully Connected: 
• Connect neuron in hidden 

layer to all neurons in input 
layer

• No spatial information!
• And many, many parameters!

Input: 
• 2D image
• Vector of pixel values

http://introtodeeplearning.com/
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Fully Connected Neural Network

How can we use spatial structure in the input to inform the architecture of the network?

Fully Connected: 
• Connect neuron in hidden 

layer to all neurons in input 
layer

• No spatial information!
• And many, many parameters!

Input: 
• 2D image
• Vector of pixel values
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Using Spatial Structure

Neuron connected to region of 
input. Only “sees” these values. 

Idea: connect patches of input 
to neurons in hidden layer.

Input: 2D image. 
Array of pixel values

http://introtodeeplearning.com/
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Using Spatial Structure

Connect patch in input layer to a single neuron in subsequent layer.
Use a sliding window to define connections.

How can we weight the patch to detect particular features? 

http://introtodeeplearning.com/
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Applying Filters to Extract Features

1) Apply a set of weights – a filter – to extract local features

2) Use multiple filters to extract different features

3) Spatially share parameters of each filter
(features that matter in one part of the input should matter elsewhere) 
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Feature Extraction with Convolution

1) Apply a set of weights – a filter – to extract local features 

2) Use multiple filters to extract different features

3) Spatially share parameters of each filter

- Filter of size 4x4 : 16 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This “patchy” operation is convolution

http://introtodeeplearning.com/


Feature Extraction and Convolution
A Case Study
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X or X?

Image is represented as matrix of pixel values… and computers are literal! 
We want to be able to classify an X as an X even if it’s shifted, shrunk, rotated, deformed.

[4]
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Features of X

[4]
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Filters to Detect X Features

filters

[4]
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The Convolution Operation

element wise
multiply add outputs

1 1 = 1X

= 9

[4]
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The Convolution Operation

Suppose we want to compute the convolution of a 5x5 image and a 3x3 filter :

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs…
image

filter

[5]
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The Convolution Operation

filter feature map

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

[5]
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We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:
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Producing Feature Maps

Original Sharpen Edge Detect “Strong” Edge 
Detect

http://introtodeeplearning.com/
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Feature Extraction with Convolution

1) Apply a set of weights – a filter – to extract local features 

2) Use multiple filters to extract different features
3) Spatially share parameters of each filter

http://introtodeeplearning.com/


Convolutional Neural Networks (CNNs)
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CNNs for Classification

1. Convolution: Apply filters with learned weights to generate feature maps.
2. Non-linearity: Often ReLU. 
3. Pooling: Downsampling operation on each feature map. 

Train model with image data.
Learn weights of filters in convolutional layers.

http://introtodeeplearning.com/
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Convolutional Layers: Local Connectivity

For a neuron in hidden layer:
- Take inputs from patch 
- Compute weighted sum
- Apply bias

http://introtodeeplearning.com/
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Convolutional Layers: Local Connectivity

For a neuron in hidden layer:
- Take inputs from patch 
- Compute weighted sum
- Apply bias

4x4 filter : matrix 
of weights !"# $

"%&

'
$
#%&

'
!"# (")*,#), + .

for neuron (p,q) in hidden layer

1) applying a window of weights 
2) computing linear combinations

3) activating with non-linear function

http://introtodeeplearning.com/
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CNNs: Spatial Arrangement of Output Volume

depth

width

height

Layer Dimensions:
ℎ " # " $

where h and w are spatial dimensions
d (depth) = number of filters

Receptive Field: 
Locations in input image that 
a node is path connected to

Stride:
Filter step size

[3]
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Introducing Non-Linearity

! " = max (0 , " )

Rectified Linear Unit (ReLU)- Apply after every convolution operation (i.e., after 
convolutional layers)

- ReLU: pixel-by-pixel operation that replaces all negative 
values by zero. Non-linear operation!

[5]
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Pooling

How else can we downsample and preserve spatial invariance?

1) Reduced dimensionality
2) Spatial invariance

[3]
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Representation Learning in Deep CNNs

Mid level features

Eyes, ears, nose

Low level features

Edges, dark spots

High level features

Facial structure

Conv Layer 1 Conv Layer 2 Conv Layer 3

[3]
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CNNs for Classification: Feature Learning

1. Learn features in input image through convolution
2. Introduce non-linearity through activation function (real-world data is non-linear!)
3. Reduce dimensionality and preserve spatial invariance with pooling

http://introtodeeplearning.com/
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CNNs for Classification: Class Probabilities

- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as probability of image belonging to a particular class

softmax () = +,-
∑/ +,0

http://introtodeeplearning.com/
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CNNs: Training with Backpropagation

Learn weights for convolutional filters and fully connected layers

! " =$
%
&(%) log ,-(%)

Backpropagation: cross-entropy loss

http://introtodeeplearning.com/
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ImageNet Dataset

Dataset of over 14 million images across 21,841 categories

1409 pictures of bananas.

“Elongated crescent-shaped yellow fruit with soft sweet flesh”

[6,7]
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ImageNet Challenge

Classification task: produce a list of object categories present in image. 1000 categories.
“Top 5 error”: rate at which the model does not output correct label in top 5 predictions

Other tasks include: 
single-object localization, object detection from video/image,  scene classification, scene parsing

[6,7]
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ImageNet Challenge: Classification Task
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2012: AlexNet. First CNN to win. 
- 8 layers, 61 million parameters
2013: ZFNet
- 8 layers, more filters
2014: VGG
- 19 layers 
2014: GoogLeNet
- “Inception” modules 
- 22 layers, 5million parameters
2015: ResNet
- 152 layers 
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ImageNet Challenge: Classification Task
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An Architecture for Many Applications

Object detection with R-CNNs
Segmentation with fully convolutional networks

Image captioning with RNNs

http://introtodeeplearning.com/


6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Beyond Classification

Object Detection

CAT, DOG, DUCK

Semantic Segmentation

CAT

Image Captioning

The cat is in the grass.

http://introtodeeplearning.com/
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Semantic Segmentation: FCNs

FCN: Fully Convolutional Network.
Network designed with all convolutional layers,

with downsampling and upsampling operations

[3,8,9]
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Driving Scene Segmentation

[10]Fix reference
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Driving Scene Segmentation

[11, 12]
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Object Detection with R-CNNs

R-CNN: Find regions that we think have objects. Use CNN to classify.

[13]
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Image Captioning using RNNs

[14,15]

http://introtodeeplearning.com/


6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Image Captioning using RNNs

[14,15]
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Deep Learning for Computer Vision: 
Impact and Summary
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Data, Data, Data

MNIST: handwritten digits

places: natural scenes
ImageNet:  

22K categories. 14M images.
CIFAR-10

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship 

Truck
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Deep Learning for Computer Vision: Impact
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Impact: Face Detection
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Impact: Self-Driving Cars

[16]
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Impact: Healthcare

[17]

Identifying facial phenotypes of genetic disorders using deep learning
Gurovich et al., Nature Med. 2019
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Deep Learning for Computer Vision: Summary

• Why computer vision?
• Representing images
• Convolutions for 

feature extraction

Foundations CNNs Applications
• CNN architecture
• Application to 

classification
• ImageNet

• Segmentation, object 
detection, image 
captioning

• Visualization

http://introtodeeplearning.com/
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