
Web API development with OpenAPI – Exercise
M2M Communications
Dimitrios J. Vergados

June 30, 2023

Presentation outline
• Introduction
• API definition
• Create and test the server stub
• Create the client
• Implementing the prime factorization algorithm
• Bonus: Add proper exception handling

Introduction
• In this exercise we will implement a client-server application in python,

using
– OpenAPI specification for the API
– and the swagger codegen tool for creating the client and server stubs.

• Then we will implement the client and server logic

• Assignment:

– Create a web API server that accepts an array of numbers, and returns
the prime factorization of each of the numbers sumbitted.

– Also create a client application to test the API

• For example, the API may be accessible through a POST request, with
the body having the following format:

{
"input_numbers": [1, 4, 6, 10, 20]

}

where each number is an integer smaller than 1000.

• The response could be a JSON object with the following format:

{
"result": [

{
"input_number": 1,

1

"prime_factors": []
},{

"input_number": 4,
"prime_factors": [2, 2]

},{
"input_number": 6,
"prime_factors": [2, 3]

},{
"input_number": 10,
"prime_factors": [2, 5]

},{
"input_number": 20,
"prime_factors": [2, 2, 5]

}
]

}

• The test program should
– accept a list of command line arguments,
– send an API call with these numbers,
– and then print the prime factorization that is returned for each

number.
• In case of error the API client should print error messages explaining what

the problem is

API definition
• Use the swagger editor tool available at https://editor.swagger.io to write

the OpenAPI document, using OpenAPI 3.0

• Use the previous presentation, as well as any other online resources to
define the API that was specified above.

• Set the servers object to the following:

servers:
- url: http://localhost:8080

• Add an object definition in components.schemas for the request body,
and for the result

• Add a path (e.g. /primes) for the API endpoint

2

https://editor.swagger.io

Generate server and client

• Make sure that there are no errors or warnings on the top of the swagger
editor preview window

Figure 1: swagger edit screenshot

• To generate the server:
– From the swagger editor, select Generate Server–>python-flask

• To generate the client:
– From the swagger editor, select Generate Client –> python

• The browser will download the generated zip files in the Downloads di-
rectory. Move these files to a directory of your choice, that will be the
working directory, e.g. in a directory with your name on the Desktop.

Create and test the server stub

Setting up the environment

• Extract the server files form file python-flask-server-generated.zip in
a subdirectory of your working directory e.g. to Desktop/myname/server

• Open a terminal window and enter the directory

• Create a virtual environment for the server with

3

Figure 2: swagger edit screenshot

python3 -m venv testenv

• load the virtual environment with

source testenv/bin/activate

Note: On windows the instructions for creating and activating the environment
are different, see https://programwithus.com/learn/python/pip-virtualenv-
windows

• Fix requriements.txt file to set specific versions for connexion and
connexion[swagger-ui]: Replace lines

connexion >= 2.6.0
connexion[swagger-ui] >= 2.6.0

with

connexion == 2.14.2
connexion[swagger-ui] == 2.14.2

• Then install the server dependencies with

pip install -r requirements.txt

Run the server

• To test the server, with the virtual environment activated, run

4

https://programwithus.com/learn/python/pip-virtualenv-windows
https://programwithus.com/learn/python/pip-virtualenv-windows

FLASK_DEBUG=development python -m swagger_server

• You should see the following line (among others)

Running on http://127.0.0.1:8080

indicating that the server is listening on localhost on port 8080

Test the server with Postman

• Open postman, and create a request that matches the one you defined in
your OpenAPI file

• Post a valid object to the API

• You should see a result like:

Figure 3: postman

Add placeholder response

• The server now is returning a string that is not a valid response object.
• This means that the client will throw an exception if it tried to connect to

the server
• To fix this, in the server files open the controller that is responsible for the

API call, under swagger_server/controllers/

• Find the line with

5

return 'do some magic!'

• And replace it with a call that returns a valid object (for testing purposes)

• For example if the response object is named PrimeFactorization, the
line should become:

return PrimeFactorization.from_dict({
"result": [

{
"input_number": 1,
"prime_factors": []

},{
"input_number": 4,
"prime_factors": [2, 3]

},{
"input_number": 6,
"prime_factors": [2, 3]

},{
"input_number": 10,
"prime_factors": [2, 5]

},{
"input_number": 20,
"prime_factors": [2, 2, 5]

}
]

})

1. Don’t forget to import the relevant model classes
2. Don’t forget to restart your server before testing

• Now the response in Postman should look like this:

We will do a proper implementation of the prime factor generating code in a bit,
for now lets write the client that will connect to the API.

Create the client

Setup the environment

• Extract the client files form file python-client-generated.zip in a sub-
directory of your working directory e.g. to Desktop/myname/client

• Open a terminal window and enter the directory

6

Figure 4: postman with output

• Create a virtual environment for the client with

python3 -m venv testenv

• load the virtual environment with

source testenv/bin/activate

• Then install the server dependencies with

pip install -r requirements.txt

Note: On windows the instructions for creating and activating the environment
are different, see https://programwithus.com/learn/python/pip-virtualenv-
windows

Creating a client

• Open the README.md file and copy the example from the section ##
Getting Started into a new file, in the same directory, e.g. in
my_client.py.

• Activate the environment

• Ensure that the server is running

• Run the file my_client.py with

python my_client.py

7

https://programwithus.com/learn/python/pip-virtualenv-windows
https://programwithus.com/learn/python/pip-virtualenv-windows

• You should see an error message like:

Traceback (most recent call last):
File "/home/djvergad/lessons/swagger_excersize/solution/python-client-generated/client.py", line 8, in <module>

api_instance = swagger_client.DefaultApi(swagger_client.ApiClient(configuration))
NameError: name 'configuration' is not defined

• To fix the previous error message delete the undefined variable by replacing

api_instance = swagger_client.DefaultApi(swagger_client.ApiClient(configuration))

with

api_instance = swagger_client.DefaultApi(swagger_client.ApiClient())

• Run the client again, and now you should get the following error

python client.py
Traceback (most recent call last):

File "/home/djvergad/lessons/swagger_excersize/solution/python-client-generated/client.py", line 9, in <module>
body = swagger_client.InputNumbers() # InputNumbers | The numbers to be factorized (optional)

File "/home/djvergad/lessons/swagger_excersize/solution/python-client-generated/swagger_client/models/input_numbers.py", line 42, in __init__
self.input_numbers = input_numbers

File "/home/djvergad/lessons/swagger_excersize/solution/python-client-generated/swagger_client/models/input_numbers.py", line 63, in input_numbers
raise ValueError("Invalid value for `input_numbers`, must not be `None`") # noqa: E501

ValueError: Invalid value for `input_numbers`, must not be `None`

• The reason for the error is the object we are transmitting to the server
doesn’t have the required property input_numbers

• Replace the line

body = swagger_client.InputNumbers() # InputNumbers | The numbers to be factorized (optional)

with

body = swagger_client.InputNumbers([30, 45]) # InputNumbers | The numbers to be factorized (optional)

• Now the variable should not be None, and the API server should respond
with the default object we created earlier:

python client.py
{'result': [{'input_number': 1, 'prime_factors': []},

{'input_number': 4, 'prime_factors': [2, 3]},
{'input_number': 6, 'prime_factors': [2, 3]},
{'input_number': 10, 'prime_factors': [2, 5]},
{'input_number': 20, 'prime_factors': [2, 2, 5]}]}

8

Read command line arguments

• In order to read the command line arguments, we first should import the
sys library, by placing

import sys

near the top of the file

• Next, we will replace the command that prints the InputNumbers object, so
that instead of static values, it will accept the numbers from the command
line.

• Replace the line:

body = swagger_client.InputNumbers([30, 45]) # InputNumbers | The numbers to be factorized (optional)

with

body = swagger_client.InputNumbers([int(n) for n in sys.argv[1:]]) # InputNumbers | The numbers to be factorized (optional)
pprint(body)

• Explanation:

– sys.argv is the list of the command line arguments
– with sys.argv[1:] we slice the list to get all the arguments from

the second to the last. We exclude the first argument, because that
is the name of our program.

– Next, int(n) converts each argument from a string to an integer

Print error messages more clearly

• In order for any error messages to be displayed more clearly, add the
following statement in the last line of the file, in the except block:

print(json.loads(e.body)['detail'])

while also adding import json in header.

The client is now ready!

Next, we will implement the prime factorization algorithm in the server, so that
the server returns the correct values.

Implementing the prime factorization algorithm

9

Create a file with the implementation

• Create a file named factorization.py in directory under swagger_server/adapters.

• The file will implement a function for prime factorization:

def prime_factors(n):
i = 2
factors = []

Add here an implementation of the prime factorization algorithm

return factors

Modify the controller to call the adapter for each input value

• Replace the body of the primes_post function with the following:

if connexion.request.is_json:
body = InputNumbers.from_dict(connexion.request.get_json()) # noqa: E501

print(body.input_numbers)
return PrimeFactorization.from_dict({

"result": [{
"input_number": n,
"prime_factors": prime_factors(n)

} for n in body.input_numbers]
})

• Don’t forget to import the prime factorization method from the adapter.
In the header, add:

from swagger_server.adapters.factorization import prime_factors

Now it should be working

• Test that the client receives the correct values from the server

Bonus: Add proper exception handling
• Hints:

– Modify the response object in the openapi definition to include an
optional field for an error message. The result field should also become
optional.

– Use the abort function from the flask module: from flask import
abort

10

– Use a try except block in the controller method

Thank you for the attention
Questions?

dvergados@uowm.gr

11

	Web API development with OpenAPI – Exercise
	M2M Communications
	Dimitrios J. Vergados
	June 30, 2023

	Presentation outline
	Introduction
	API definition
	Generate server and client

	Create and test the server stub
	Setting up the environment
	Run the server
	Test the server with Postman
	Add placeholder response

	Create the client
	Setup the environment
	Creating a client
	Read command line arguments
	Print error messages more clearly

	Implementing the prime factorization algorithm
	Create a file with the implementation
	Modify the controller to call the adapter for each input value
	Now it should be working

	Bonus: Add proper exception handling
	Thank you for the attention

