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AbstrAct

Today’s existing smart city research involves 
many overtly futuristic applications such as smart 
transportation, in which smart roads warn driv-
ers of bad traffic conditions ahead, smart parking, 
which communicates the location of unoccupied 
parking spaces to drivers, and smart environment, 
which enables fully automated homes and work-
places to adjust their temperature to conserve 
energy. The realization of these applications hing-
es on a data acquisition structure that gathers its 
data from a countless number of sensors, either 
deployed for predefined tasks (hard sensing) or 
built into the mobile devices of smart city resi-
dents (soft sensing). At the core of this big data 
infrastructure lie the 5Vs: veracity, volume, veloc-
ity, variety, and value. The soft sensing compo-
nent of a smart city sensing network is particularly 
affected by 3Vs: veracity, volume, and velocity. 
To address the unique challenges of big data, rec-
ommender systems, statistical reputation systems, 
and context analysis are used to ensure the verac-
ity of acquired data, machine learning algorithms 
are applied to handle the data volume, and data 
analytics algorithms are implemented to manage 
data velocity. Despite its seemingly insurmount-
able size, the acquired data is highly redundant, 
and systematic use of machine intelligence and 
data analytics can facilitate processing by extract-
ing only the relevant information; in this article, 
we study the role of these algorithms through the 
lens of the 3Vs in facilitating soft sensing within 
the framework of smart city applications.

IntroductIon
Smart city applications are built on an infrastruc-
ture, as depicted in Fig. 1. The sensing component 
enables data acquisition from numerous sensors 
deployed throughout the city (e.g., traffic cameras 
and speed sensors) or built-in sensors in residents’ 
smartphones (e.g., GPS and accelerometers in a 
crowdsensing setting), both of which transmit the 
acquired data to the cloud for further processing. 
The processing component utilizes machine intel-
ligence algorithms to make real-time intelligent 
decisions (e.g., detecting traffic accidents), while 
data analytics algorithms allow the city to extract 

valuable statistical correlations (e.g., identifying 
the most likely cause of traffic accidents) in the 
long term. Finally, the publishing and control com-
ponent facilitates cooperation between human 
decisions (e.g., city operators) and machine algo-
rithms. This article investigates some specific cases 
of smart city applications of machine intelligence 
and data analytics.

Central to the operation of every smart city 
application is a data collection network of Internet 
of Things (IoT) sensors [1], either built on tradition-
al fixed-location dedicated sensors (e.g., cameras) 
or sensors built in to the mobile devices of city res-
idents who volunteer in crowdsensing platforms 
(e.g., the mobile phone GPS and accelerometer 
use in pothole detection [2]). These two sensing 
platforms are termed hard sensing and soft sens-
ing, respectively. Regardless of the sensing plat-
form, the amount of data generated far exceeds 
the current processing capabilities of its eventual 
destination — the cloud; this “big data problem” is 
characterized by the 5Vs: volume, variety, velocity, 
veracity, and value. Of these, this article investi-
gates the 3Vs that have the highest impact on soft 
sensing: veracity, volume, and velocity.

To address veracity, the trustworthiness of 
the acquired data is analyzed. Outlier detection 
techniques are implemented to improve the 
reliability/validity of sensed data. Decentralized 
recommender systems are utilized to filter outli-
ers before any statistical analysis or data fusion 
is performed. Statistical reputation systems are 
employed in order to establish the trustworthiness 
of individual users in participatory sensing, and to 
detect fraud and misinformation. Context analysis 
is used to detect and prevent the injection of sen-
sor data resulting from spoofed identity.

To handle the processing of high-volume 
data, the use of machine intelligence algorithms 
is investigated. As the data collection network 
transmits information to the cloud, machine intelli-
gence algorithms make decisions and predictions 
based on the data, eliminating data redundancy 
and significantly reducing the amount of infor-
mation to be processed. These algorithms can 
operate in real time, with a large portion of the 
preprocessing being run locally on the sensors 
themselves.
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To address the issue of data arriving at high 
velocity, the application of data analytics algo-
rithms is studied. Once information is stored in 
the cloud, data analytics algorithms can be used 
to extract valuable statistical information (e.g., 
causes of traffic congestion based on vehicle 
trajectories from nearby roads, optimized using 
k-nearest neighbor, kNN [3]). This information 
can then be used to optimize smart city opera-
tions (e.g., adjusting traffic light sequences to help 
alleviate congestion).

sMArt cIty soFt sEnsInG
An IoT-big data ecosystem in a smart city setting 
acquires data via distributed sensors that can be 
uniquely identified, localized, and communicated 
with. The IoT denotes the interconnection of sen-
sors, RFID tags, smartphones, and other objects 
in a scalable manner [1]. In such an ecosystem, 
hard sensing (or, alternatively, dedicated sensing) 
is the primary sensing paradigm in many smart 
city applications, as it can be tailored to precisely 
meet the application requirements. Typical hard 
sensing systems consist of sensing stations that 
measure certain pre-defined parameters. The dis-
tinguishing characteristic of dedicated sensing is 
that architectural components (sensing, process-
ing, publishing, and control, as shown in Fig. 1) 
are either owned or leased by the system admin-
istrator. On the other hand, soft sensing (or, alter-
natively, non-dedicated sensing) is an essential 
component of a smart city, which calls for distrib-
uted approaches to ensure veracity and efficiency.

Soft sensing includes various non-dedicated 
sensing paradigms such as opportunistic sensing, 
participatory sensing (i.e., crowdsensing), and 
social sensing where citizens serve as sensing 
nodes. The number of connected mobile devic-
es equipped with built-in sensors is predicted to 
exceed half of the world’s population by the end 
of 2018 [4]. Soft sensing calls for novel methods 
for storage, management, and processing of the 
sensed data by using predictive analytics, data 
mining, text analytics, and statistical analysis. GPS, 
camera, accelerometer, gyroscope, and micro-
phone are among the most common built-in sen-
sors; widespread use of these devices signals their 
future potential for being an integral part of IoT-
based sensing in smart cities.

soFt sEnsInG VErAcIty:  
dAtA usEFuLnEss And trustWortHInEss

Heterogeneity of sensors and sensing platforms 
introduces the problem of usefulness and trustwor-
thiness of sensed data. We start with the veracity 
aspect because data trustworthiness needs to be 
handled at the data acquisition stage prior to min-
ing or analysis of the data. Data trustworthiness can 
be addressed via three methodologies:
• Applying reputation systems to detect fraud 

and misinformation
• Applying recommender systems to filter mal-

functioning sensors
• Applying anomaly detection schemes to 

cope with misuse of devices
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Figure 1. Components of a smart city. The sensing component is composed of a wired or wireless distrib-
uted sensor network, which acquires data through dedicated and non-dedicated sensors and transmits 
it to the cloud. The processing component houses a set of smart city applications, stores raw or pro-
cessed data, and monitors the conflicts among different applications using machine intelligence. The 
publishing and control component is responsible for providing a visualization of the acquired sensor 
data in addition to analytics about that data. This component is controlled by one or more city opera-
tors that can adjust the operational parameters of different software components. 
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FrAud And MIsInForMAtIon In soFt sEnsInG
Outlier detection techniques are also used to 
improve the reliability/validity of sensed data. In 
soft sensing, each sensing request — submitted 
to non-dedicated sensors — has a value for the 
requesting platform. The entirety of the sensed 
data by all participants of this platform corre-
sponds to the “value” of the received data (or, 
more generally, information). This value is quanti-
fied in [4] on a discrete scale for all sensing tasks 
by considering the average reputation of the par-
ticipants.

VErAcIty oF soFt sEnsInG In PArtIcIPAtory contExts

Soft sensor veracity may be impacted by low-qual-
ity data, sometimes caused by malicious behav-
ior. Low veracity of soft sensor data is not always 
caused by malicious behavior; inaccurate readings 
resulting from sensor malfunction or other envi-
ronmental factors, such as interference, can also 
affect veracity. While statistical analysis to obtain 
the reputation of soft sensors can reveal malicious 
behavior, decentralized recommender systems 
can also help filter outliers before they undergo 
any statistical analysis or data fusion [4].

Since individual soft sensors may not always 
be available (or, in the case of participatory sens-
ing, users of devices with built-in sensors need to 
be compensated/awarded for participation), a 
recommender system can eliminate some partic-
ipants while ensuring the same level of accuracy 
as a soft sensing network where all participants 
contribute. In a simple recommender system 
the fundamental assumption is that each sen-
sor hears the values read by other sensors, and 
then casts a vote for every other soft sensor in 
the vicinity. If the similarity score of sensor x is 
within a D interval, a +1 vote is cast for the sen-
sor; otherwise, a –1 vote is cast. The sum of the 
received votes for each sensor is normalized by 
the total number of participating soft sensors, 
and a hypothetical veracity value is obtained for 
each soft sensor. If the hypothetical veracity of a 

sensor is below a predetermined threshold t, the 
reading of the sensor is excluded from the data 
fusion process.

We have run a simple experiment and sim-
ulation by recording the sound level in a room 
through the sound sensor module of a Google 
Nexus 9 tablet for five minutes, where the aver-
age sound level at the end of the fifth minute was 
used as the dedicated sensing value. To assess the 
performance of non-dedicated sensing in a similar 
setting, we have simulated an identical scenario 
where N sensors were distributed in the same ter-
rain with Gaussian distribution, and additive white 
Gaussian noise was introduced to the reading of 
each non-dedicated sensor. We set the similarity 
threshold (D) at 0.65, whereas the predetermined 
threshold to exclude the soft sensor from fusion 
(t) was set at 0.8. The results appear in Fig. 2, 
where each bar represents the average of 100 
runs. The left chart predicts sound levels reported 
by a hard sensor, soft sensors, and soft sensors 
with a recommender system, while the right chart 
depicts the number of participating sensors vs. 
the total number of contributing sensors when a 
recommender system was used. The maximum 
complexity of this system will be O(n2), where n is 
the number of nodes in the system. For the sake 
of scalability, the number of recommenders can 
be limited so that the system is able to effectively 
scale itself if the number of nodes increases.

dEVIcE MIsusE In soFt sEnsInG

Since soft sensing relies on non-dedicated resourc-
es, security and privacy are crucial concerns from 
the users’ perspective. Besides the traditional solu-
tions to protect sensed data, secure access and 
user privacy preservation are important consider-
ations. Continuous identification and authentica-
tion via behaviometrics is an emerging concept 
that promises to provide a cost-effective alter-
native without compromising security. Despite 
ensuring security through continuous recognition 
of behavioral patterns, non-dedicated sensing 

Figure 2. A simple feasibility study of recommender systems in soft sensing: (left) sound level reported by a hard sensor, sound level 
sensed by soft sensors, and sound level reported by soft sensors with a recommender system; (right) number of participating sen-
sors vs. number of contributing sensors when a recommender system is used. Soft sensing with and without a recommender sys-
tem leads to an error between 2 and 4 percent. A simple recommender system can achieve the same level of veracity with 14–24 
percent fewer soft sensors.
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through built-in sensors reveals users’ behavioral 
patterns, raising further privacy concerns.

A grand challenge in soft sensing is the mis-
use of devices, which can be prevented by 
applying machine intelligence techniques. In [5], 
the authors adopt the concept of an Internet of 
Biometric Things to reduce false acceptance to 
below the typical 10–4 to 10–6 range that most 
biometric systems claim; they utilize the rich con-
textual information and biometric identification 
methods built into most of today’s mobile devices 
to provide authentication via knowledge-based 
spatio-temporal abstraction.

Figure 3 illustrates a case study for a user 
selected from the same dataset in [5] who provid-
ed context data (the user’s social activity on vari-
ous mobile applications on a smartphone) for two 
months. After monitoring the user data, a classifier 
was trained in an unsupervised manner via the 
DBSCAN algorithm, identifying the user with high 
accuracy. When artificially induced anomalous 
behavior patterns are injected into a sensor, the 
detection of a spoofed identity becomes possible 
by incorporating machine intelligence into contex-
tual pattern recognition.

soFt sEnsInG dAtA In HIGH VoLuME: 
MAcHInE IntELLIGEncE In  

sMArt cIty sEnsInG
Although not an exhaustive listing, Table 1 pro-
vides an overview of how machine learning algo-
rithms can be used in smart city applications. This 
section elaborates on some of these algorithms.

MAcHInE IntELLIGEncE to AId dAtA PrEProcEssInG

As a result of the increase in the number of con-
nected devices with various built-in sensors, the 
amount of global data traffic will soon lead to a 
“data tsunami,” creating the possibility of a net-
working bottleneck between sensors and the 
cloud. As discussed in [7], the sensing network 
can process data rather than strictly acquiring it; 
this creates a decentralized distributed machine 
intelligence system that benefits from the same 
accuracy as cloud-based algorithms and drasti-
cally reduces network traffic. The ever-increas-
ing processing power in mobile and wearable 
devices provides the capability to apply machine 
intelligence techniques locally rather than in the 
cloud. Their proposed technique is based on 

GreedyTL, a hypothesis transfer learning (HTL) 
algorithm; focusing on binary classification, it 
allows the application of already learned models 
(source models) to smaller datasets (target model) 
in order to improve the accuracy of model 
extraction, assuming the datasets are indepen-
dent. Their hybrid approach produced results as 
accurate as traditional centralized cloud process-
ing with a decrease up to 77 percent in network 
overhead.

A principal difficulty in designing a classifica-
tion system is extracting and defining the prop-
er set of features; deep learning techniques are 
preferred due to their inherent ability to not 
rely on feature extraction. However, using mul-
tiple layers in deep learning algorithms makes 
the application more computationally intense; 
while this does not present a computational 
challenge for cloud platforms, it can become 
infeasible for sensing nodes with limited compu-
tational and energy resources. For these reasons, 
deep learning cannot extract all of the features 
needed for an application. As a remedy, deep 
learning is complemented by predefined, or 
shallow, features in a hybrid approach to boost 
accuracy and reduce computational intensity in 
[8]. Deep and shallow features are trained in a 
unified machine intelligence network, in which 
spectral representations of the data are pro-
cessed using 1D convolutional kernel (similar to 
convolutional neural networks) with stochastic 
gradient descent (SGD) used to minimize the 
loss function. Their experimental results show 
that in many databases the accuracy of the algo-
rithm is higher than deep-learning-only and shal-
low-feature-only approaches; classification times 
on Nexus 5, Galaxy S5, and Intel Edison devices 
were 53.8, 125.2, and 198.8 ms, respectively, 
proving the real-time feasibility of this approach.

Machine intelligence algorithms are also 
well-suited for mobile big data (MBD) as they 
can extract features from the vast quantity of 
unlabeled data gathered by mobile devices, and 
tend to provide highly accurate results. The big-
gest challenge facing machine learning in MBD 
is slow processing time due to the necessity for a 
large amount of computational power, the inher-
ent volatility of MBD, and multidimensionality. To 
overcome this hurdle, an Apache Spark-based 
deep learning framework for MBD analytics is 
proposed in [10]. The decision making process is 

Figure 2. Continuous authentication of a representative mobile user under normal conditions and after 
misuse has been introduced for five consecutive days. Authenticity is ensured by a 90 percent true 
rejection rate when misuse is present in social sensing settings.
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sped up by breaking the data into partitions con-
tained in resilient distributed datasets (RDDs) for 
processing in the cloud by the Spark engine. Their 
deep model results found recognition errors of 
only 14.4 percent. Data labeling has always pre-
sented a challenge in MBD, most often requiring 
human intervention; they call for further research 
in labeling approaches, such as paid crowd-label-
ing, in which people are paid by annotating data 
based on quantity and accuracy, and embedded 
crowd-labeling, in which people annotate data 
without realizing it (e.g., through CAPTCHA). The 
incentive(s) offered should be proportional to the 
value and accuracy of the data being provided.

MAcHInE IntELLIGEncE In sMArt trAnsPortAtIon

The Street Bump application developed by the 
City of Boston identifies streets in need of repair 
by using the GPS and accelerometer sensors in 
citizens’ mobile devices to detect bumps while 
driving, essentially creating an infrastructure-free 
soft sensing network. Machine intelligence algo-
rithms, including support vector machines (SVM) 
and AdaBoost, are used to establish an anoma-
ly detection and decision support framework to 
identify streets in need of repair by using acquired 
data (i.e., coordinates of the bump, speed of the 
vehicle, course, and x-, y-, and z-axis readings from 
the accelerometer). “Bump” events are divided 
into two categories:
• Actionable events, such as potholes created 

by accidents or weather conditions, which 
must be detected and transmitted for repair

• Non-actionable events, such as train tracks, 
drains, or manhole covers, which are predict-
able and do not require repair [2]

The mobile device senses the event, while 
machine intelligence processes the data, and, 
in the case of actionable events, the gathered 
information is transmitted to notify appropriate 
city services (control personnel), as seen in Fig. 
1. Street Bump was shown to accurately detect 
almost 50 percent of actionable events, with a 
false alarm rate of only 20 percent.

MAcHInE IntELLIGEncE In EnVIronMEntAL MonItorInG

To combat the sparsity of dedicated environmental 
monitoring sensors, a crowdsensing solution is pro-
posed in [6]. The nodes, which measure levels of 
various atmospheric gases, use Bluetooth 4.0 (with 
a range of 250 ft) to transmit their data to volun-
teers’ mobile devices, which act as relays between 
the sensors and the cloud. Their system, HazeEst, 
combines existing historical air quality data gathered 
from fixed sensors with crowdsensed node data to 
form a learning model used to estimate air pollu-
tion over a given area. Data was collected with their 
network and multiple regression models were used, 
but the best results were obtained from support 
vector regression (SVR), decision tree regression 
(DTR), and random forest regression (RFR). Results 
obtained using SVR had the lowest estimation 
mean absolute error (MAE) of 1.95 and the lowest 
root mean square error (RMSE) of 3.17, enabling 
HazeEst to clearly identify areas of higher pollution.

soFt sEnsInG dAtA In HIGH VELocIty: 
dAtA AnALytIcs In sMArt cItIEs

Once the data acquired from smart cities’ sens-
ing networks has been processed and stored, 
the application of data analytics algorithms can 

Table 1. A sampling of machine intelligence algorithms and their use in smart city applications.

Algorithm Application Description

Support Vector Machine Smart transportation
Support vector machines can be used to classify data based on their position 
relative to a determined hyperplane, such as in the Smart Bump application which 
uses SVM to identify streets in need of repair [2].

Support Vector Regression Smart environment
Support vector regression is generally used for geometrical interpretations of 
kernels in a feature space in the absence of local minima. HazeEst uses SVR to 
estimate air pollution in a given area [6].

Hypothesis Transfer 
Learning

Smart sensors
Hypothesis transfer learning is used in situations where direct access to sensed data 
is not available. A hypothesis is deduced from the data, such as in GreedyTL for 
binary classifcation [7].

Neural Network Smart sensors
CNN is used in a hybrid approach for combining deep and shallow features in 
machine learning [8]. 

Linear Classifier Smart grid
Linear classifiers can be used to characterize data received from smart grid sensors 
based on a linear combination of its characteristics. 

Quadratic Classifier Smart parking
A broader implementation of linear classifier, quadratic classifiers can be used in 
smart parking by using a quadratic surface to assist in the separation of multiple 
object classes obtained from soft sensors. 

Binary Classification Smart health
Binary classification uses classification rules to make a decision whether sensed 
data contains some specific characteristic, such as in passive RFID tags used in 
medical settings [9]. 

Decision Tree Smart lighting
Decision trees use a tree-like model of possible decisions and their resulting 
consequences to determine the best course of action, such as turning lights on or 
off or dimming lights during certain time frames.

The Street Bump appli-
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reveal invaluable insights into many aspects of 
smart city applications. The value chain of “big 
data” is formed by the generation, acquisition, 
storage, and analysis of data gathered from smart 
city applications where data acquisition is bro-
ken down into data collection, data processing, 
and data control (Fig. 1). Data collection tech-
nologies include log files, sensing, and acquiring 
network data (e.g., libpcap-based packet capture 
technology, zero-copy packet capture technolo-
gy, and mobile equipment). Data transmission can 
be achieved by inter- and intra-data-center net-
work transmissions, whereas data preprocessing 
consists of integration, cleaning, and redundancy 
stages. Big data storage uses advanced technolo-
gies such as key-value databases, column-oriented 
databases, and document databases.

In several smart city applications historical data 
and currently acquired data need to be decou-
pled, as the dataset is dynamic and exposes uncer-
tainties. In Fig. 4, we present a generic framework 
for IoT-driven analytics solutions for smart cities. 
As seen in the figure, the analytics engine basi-
cally runs parallel classifiers on a MapReduce sys-
tem. This minimalist illustration of an IoT-analytics 
framework for smart cities can be applied to all 
analytics-backed smart city applications, such as 
those visited in this article. As such, we present 
this generic model for any smart city application.

GEnErALIzEd dAtA AnALytIcs

Some traditional data analysis methods are clus-
ter analysis, factor analysis, correlation analysis, 
regression analysis, A/B testing, statistical analy-
sis, and data mining algorithms. With the advent 
of the big data phenomenon, techniques such 
as Bloom filter, hashing, Triel (i.e., trie tree), and 
parallel computing are being utilized. The Bloom 
filter introduces the benefit of high space efficien-
cy and query speed. Hashing can read, write, and 
query rapidly, but defining the proper hash func-
tion is difficult. The index method is effective in 
reducing disk read/write costs, and in improving 
insertion, deletion, modification, and query per-
formance, but these benefits come at the expense 
of the additional storage space necessary for the 
index files. Triel uses common character string 
prefixes to greatly reduce the need for compari-
son of character strings. Parallel computing par-
titions a task into several independent subtasks, 
which can then be performed simultaneously by 
multiple processing devices. Message Passing 
Interface (MPI), MapReduce, and Dryad are some 
traditional parallel computing models.

A cloud-based analytics-as-a-service solution 
is presented in [11], which emphasizes both the 
design and portability of tools and methodologies. 
The system architecture can be divided into three 
layers:
• The data acquisition, analysis, and filtering 

layer, responsible for distributed and het-
erogeneous repositories where the data are 
retrieved, analyzed, and filtered

• The resource data mapping and linking 
layer, which establishes mappings among 
the resources where links are connected to 
make data semantically relevant

• The interactive explorer layer, which provides 
a scalable browsing platform to distributed 
datasets

Users can fix queries after obtaining results, estab-
lishing querying as an interactive process. Existing 
big data management tools include OpenStack 
and Apache Cassandra, while RapidMiner is a 
popular analysis tool.

sMArt GrId AnALytIcs

The processing of big data collected from sen-
sors is crucial in the smart city application of smart 
grid, which can gain insights into system behavior 
and automatize control. A large amount of data 
must be collected, processed, and correlated with 
consumers’ historical behavioral profiles. Data 
mining plays a crucial role in grid stability detec-
tion, required to monitor anomalous situations. 
Predictive models are also needed to forecast 
future power demand and supply in order to take 
proper action. In [12], the authors build a cloud-
based software platform for smart grid sensor 
data analytics.

The platform supports dynamic demand 
response (D2R) optimization on data from sen-
sors and dynamic data sources, secure repository 
for easily sharing data, scalable machine learning 
models for demand prediction, and a web portal 

Figure 4. Building blocks of an IoT-data analytics framework for smart cities: 
the data acquisition layer acquires data through IoT devices; the machine 
learning layer builds a training model based on current and historical data; 
the analytics engine layer uses current data as well as the training model 
that is built offline by a machine learning algorithm; the presentation layer is 
responsible for visualization of the analytics-backed data.
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and mobile application for visualization of analyt-
ics outputs. Current grids only have static demand 
response (DR) strategies (e.g., time-of-use price), 
while a smart grid offers instantaneous communi-
cation capability between customers and utilities 
and autonomous control at buildings, enabling 
D2R to approach real-time detection, response, 
and notification. Demand forecasting and cur-
tailment strategy selection are two key success-
ful D2R operations. The forecasting models are 
trained with historical energy usage patterns via 
regression tree machine learning, and auto-regres-
sive integrated moving average (ARIMA) time-se-
ries are used to offer accurate predictions for 
D2R. Data-driven models are beneficial as they do 
not require extensive technical knowledge of the 
system. Feature combinations can also be used 
to determine the most influential energy demand 
factors.

sMArt PArkInG And EnVIronMEnt AnALytIcs

The authors in [13] introduce a combined system 
for smart city development and urban planning by 
using big data analytics via a four-tier system: the 
bottom tier is responsible for data generation and 
collection; the intermediate tier-I is responsible for 
communication between sensors, devices, and 
the Internet backbone; the intermediate tier-II is 
responsible for data management and processing, 
using a Hadoop framework; and the top tier is 
responsible for the application of data analysis. 
It is implemented by using Hadoop with Spark, 
voltDB, Storm, or S4 for real-time data processing. 
Historical datasets are analyzed by Hadoop with 
MapReduce programming. The system analyzes 
different types of data and presents an analysis of 
vehicular traffic, parking lots, smart home water 
usage, flood patterns, and pollution. Vehicular 
traffic analysis can predict the travel time between 
two points and provide alternative routes to the 
destination, as well as information about real-time 
traffic. Parking lot analysis can identify places with 
available and less congested parking.

Water usage analysis can help design water 
usage systems for a house and control systems 
allowing authorities to control water resourc-
es; similar management systems can be used in 
electricity and gas usage. Flood analysis can pre-
dict the predefined thresholds of rain, providing 
advanced warning in the likelihood of a flood 
situation. Daily pollution analysis can be used to 
advise smart city residents of the intensity of pol-
lution and if any activities need to be restricted 
due to pollution. Longer periods of time analysis 
can also be useful in urban planning and traffic 
management.

sMArt trAnsPortAtIon AnALytIcs

Smart transportation is an inseparable compo-
nent of smart cities. The uncertainty in the traffic 
context is a result of the nonlinear interactions 
between vehicles, drivers, and other mobile users; 
the training of a machine-learning-based predictor 
therefore becomes rather complicated. Further-
more, due to the overfitting problem in machine 
intelligence and the large number of classes, 
offline training needs to be coupled with a real-
time prediction method. A promising solution to 
cope with this challenge is introduced in [3]. An 
online parallel kNN optimization classifies traffic 

flow based on correlations between the current 
flow, while the offline distributed training module 
(running on a MapReduce framework) provides 
inputs to the online parallel kNN module based 
on historical data. The data used in flow predic-
tion consists of the location, speed, acceleration, 
and trajectories of vehicles.

sMArt HEALtHcArE AnALytIcs

The creation of vast amounts of healthcare data 
results in many challenges, including the large 
scale and rapid generation of data, various types 
of data structures, and deep value of data. The 
authors in [14] present a cyber-physical system for 
healthcare applications and services, Health-CPS, 
which uses a data collection layer with a unified 
standard, a data management layer for distribut-
ed storage and computing, and a data-oriented 
application service layer. The data collection layer 
gathers data from researchers, medical billing, and 
clinical events, and can also include physiological 
and emotional contributions. The data manage-
ment layer consists of a distributed file storage 
(DFS) module, which includes data description, 
data entity, and security tag, and a distributed par-
allel computing (DPC) module, which processes 
data from DFS, enabling offline computation of 
massive unstructured data.

oPEn IssuEs And cHALLEnGEs
While smart cities have already evolved into prac-
tical and productive implementation, there are 
still many areas where more research is neces-
sary. It should be noted that the numerous smart 
city applications are not static; in order to prop-
erly function as a system, smart city applications 
need to be integrated and complementary. New 
data acquisition techniques are needed to ensure 
high-quality data, thereby increasing the veracity 
of soft sensor data. Valuation of data and propor-
tional incentivization (to convince users to offer 
their non-dedicated resources for use) also need 
to be investigated.

storAGE cHALLEnGEs

In an IoT-data analytics architecture, the data’s 
source and timestamp can be identified through 
spatio-temporal queries, since the IoT data is not 
spatially or temporally static. As it is imperative 
to keep track of sensed big data for future use, 
addressing storage challenges along with scalable 
data retrieval appears to be an important direc-
tion to ensure constant mobility of data. The over-
head on IoT nodes is introduced by computing 
and communication, which results in increased 
energy consumption. Traditional methods such 
as duty-cycling or employing physical models/
verifications on sensed data can be coupled with 
optimization models; sensed data transmissions 
toward the back-end can be handled by local 
bulking of multiple data samples in the same pack-
et. Coordination of IoT nodes that are co-located 
can also avoid irrelevant or redundant readings.

dAtA structurInG/LAbELInG cHALLEnGEs

Quantification of the quality of data is still an open 
issue in IoT-driven big data analytics. The profiling 
of sensed data in time, space, and other domains 
can assist in efficient computation of the quality 
of sensed data. Indeed, the trade-off between big 
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data storage and data quality quantification intro-
duces an additional challenge. SensorWeb and 
IrisNet are some known solutions.

Volume, variety, and velocity are the most crit-
ical aspects of big data in smart cities, due to high 
connectivity and D2D communication. Analytics 
software to work on long-term and real-time data 
is needed. Software architectures such as Lambda 
are available; however, real-time systems call for 
optimization software. Moreover, due to unstruc-
tured and untagged data, by 2020 more than 
half of the cyber world will be hosting non-useful 
information. Hence, data acquisition and prop-
er tagging and structuring can improve IoT data 
quality.

PrIVAcy cHALLEnGEs

The security of sensed big data, as well as 
device-level privacy in a smart city IoT architec-
ture, is a grand challenge. “Cloudification” of 
storage, processing, and networking will encom-
pass 40 percent of the cyber world, which will 
undoubtedly lead to the security as a service con-
cept in cloud analytics. Last but not least, contin-
uous sensing and reporting by IoT sensors need 
to be processed in order to provide output. Thus, 

scalable and analytics-backed visualization meth-
odologies for long-term data are also necessary to 
prevent data overloads for IoT big data systems.

suMMAry And concLudInG rEMArks
This article provides a discussion of the use of 
machine intelligence and data analytics algorithms 
on data acquired from the sensing networks inte-
gral to smart city applications. The emergence 
of crowdsensing in smart cities is revolutionizing 
the way data is obtained, but serves to increase 
the already massive volume of data. The process-
ing bottleneck caused by massive quantities of 
acquired data can be broken with the application 
of various machine intelligence algorithms. Once 
the data is processed and stored, valuable statis-
tical correlations and predictions can be extract-
ed through data analytics. The use of machine 
intelligence and data analytics in various smart 
city applications are highlighted in Table 2, show-
ing the short-term real-time processing benefits of 
machine intelligence and the long-term benefits 
of data analytics. Finally, open issues and challeng-
es facing machine intelligence and data analytics 
for software-based sensing in smart city applica-
tions are discussed.

Table 2. Comparison of machine intelligence, data analytics, and real-time algorithms in smart city applications in terms of perfor-
mance indicators. While machine intelligence is traditionally considered to be part of the data analytics process, this table is used 
to illustrate how efficient machine intelligence techniques can be applied in real-time decision making, and how data analytics can 
then be used for deeper, long-term analysis.

Smart city application Machine intelligence Data analytics

Smart rransportation

Support vector machines can be used with IoT sensors to optimize and 
control many aspects of transportation, such as traffic lights, streetlights, 
and warning/information signs. Roads in need of repair can be identified, 
such as with the City of Boston’s Street Bump application [2].

Location, speed, accelerometer, and trajectories can be used for 
online flow prediction. The data is decomposed into historical and 
current data streams. The latter undergoes a distributed MapReduce 
framework for training whereas the latter undergoes an online parallel 
kNN classifier [3].

Smart environment
Support vector regression can be applied to established crowd-sensing 
networks to monitor air quality, atmospheric greenhouse gas levels, and 
major pollution sources as in the HazeEst application [6].

Multi-tier analytics framework is used. Hadoop with Spark, voltDB, 
Storm or S4 is used for real time data processing. Hadoop with 
MapReduce programming is used for historical dataset analysis [13].

Smart health

Binary classification can be used with vital sign statistics, medication 
information, and preventative care through observation to streamline 
medical processes, such as passive RFID tagging of medical devices and 
personnel seen in [9].

Distributed parallel computing is used for integrating diverse data via 
machine intelligence and data mining algorithms [14].

Smart parking
Quadratic classifiers are useful in the identification of available parking 
spaces in smart cities and can reduce the amount of time spent driving in 
search of parking, thereby reducing emissions and saving fuel and time.

The analytics system defined for smart environment is also proposed 
for [13].

Smart lighting
Decision trees can be used to activate lights and control power levels. 
Motion, ambient light, and human presence detection can automate the 
activation of lighting systems.

Support regression vectors are used to train the system according to 
daylight level and occupancy states, and this relational model is used 
to estimate energy consumption of the system before making an 
upgrade in the lighting system [15]. The proposed analytics-backed 
framework can be used to estimate energy consumption in smart 
homes and buildings where sensors are deployed to acquire relevant 
data.

Smart grid

Linear classifiers can assist in the extrapolation of customer demand 
from sensed grid data to predict and control the supply of power. 
Discontinuities in the grid can be detected, power can be rerouted 
to bypass problem areas, and optimization used to prevent blackout 
situations.

Regression tree-based machine learning is applied to historical data 
for training. Auto-regressive integrated moving average (ARIMA) time-
series are used for accurate online predictions [12].

Smart utilities

Binary classification assists with real-time meter readings, and statistics 
can be used to optimize service and delivery of utilities. Malfunctions and 
areas in need of repair can be detected and forwarded to appropriate 
repair personnel.

Regression tree-based machine learning as well as Hadoop with 
MapReduce can be used for training historical data. ARIMA time series 
can be used with support of Hadoop [12, 13].
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