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ABSTRACT
5G Vehicular Cloud Computing (5G-VCC) infrastructures are evolv-
ing rapidly. In a 5G-VCC system, Cloud resources should be effi-
ciently distributed to provide satisfactory Quality of Service (QoS)
for modern services with increased requirements. Furthermore,
the workload should be fairly distributed to the available Virtual
Machines (VMs). This paper proposes an algorithm for performing
load balancing in Cloud infrastructures that exist in 5G-VCC sys-
tems. The algorithm is called Modified Ant Colony Optimization
(MACO), as its functionality is influenced by the natural behaviour
of ants. Specifically, the MACO algorithm assigns a pheromone
(weight) value to each VM. Subsequently, for each service request
the VM with the highest pheromone is selected in a way similar to
the one that ants apply to select optimal routes. The selection of
each VM results in the decrement its pheromone value, consider-
ing the workload of the assigned service. Evaluation results show
that the proposed algorithm outperforms existing load balancing
algorithms in terms of the processing time required for serving the
user requests.
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1 INTRODUCTION
Fifth Generation Vehicular Cloud Computing (5G-VCC) [12] com-
bines the operating principles of both Vehicular Networks [5] and
Cloud computing [9]. Network access technologies, such as 3GPP
Long Term Evolution Advanced Pro with Full-Dimension Multi-
ple Input Multiple Output (LTE-A Pro FD-MIMO) [8] are used
for the interaction between the vehicles and the Cloud infrastruc-
ture.Vehicles interact with a Cloud infrastructure, which offers a
variety of modern services with strict Quality of Service (QoS)
constraints.

The computational and storage resources of the Cloud should
be distributed optimally to user services, while at the same time
their utilization should be maximized. Load balancing [7] aims to
improve the satisfaction of the requirements of user services as well
as to increase the utilization of the Cloud resources. By applying an
effective load balancing algorithm, both the extensibility and the
availability of the system are improved. Specifically, extensibility is
the ability of the algorithm to give a simplified solution even if either
the number of users or the number of available resources increases
unexpectedly. Furthermore, the availability factor is referred to the
case when the system remains accessible even in cases where the
incoming workload requires increased system resources, or failures
occur in a part of the systems resources. Indicatively, if operational
failures occur to a serving VM, then the user requests are assigned
to other VMs.

In this paper, the Modified Ant Colony Optimization (MACO)
load balancing algorithm is proposed. The functionality of MACO
is influenced by the natural behaviour of ants, while centralized
control is performed by applying the operating principles of the
Software Defined Networks (SDN) [3]. For each user service, the
MACO algorithm assigns a pheromone value to each available
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VM, in a way similar to the one that ants apply to select opti-
mal routes. Subsequently, the VM with the higher pheromone is
selected to serve a user service. Additionally, it has to be noted
that Interval Valued Trapezoidal Fuzzy Numbers (IVTFNs) [14] are
used for the representation of the pheromone values. The proposed
algorithm is compared with existing ones considering multiple
scenarios.

The remainder of the paper is organized as follows: Section 2
overviews the existing related work, Section 3 describes the pro-
posed algorithm, Section 4 presents the evaluation results and,
finally, Section 5 concludes the described work.

2 RELATEDWORK
Several algorithms have been proposed in the research literature
for performing load balancing.

Indicatively, ACO [16] algorithm is inspired from ant search
mechanisms. An advantage of the algorithm is that it can look
for solutions with parallel mechanisms. The function of ACO is
influenced by the natural behavior of ants. Ants, during the process
of finding food, manage to find the shortest path from the food to
their nest. This is achieved because the ants as they move leave
behind a pheromone, which can be detected by others. Depending
on the distance and quality of the food, the pheromone becomes
more intense or weakens. ACO behaves in a similar way. Initially
it tries many solutions and as it compares them with each other, it
adds pheromone to them depending on the effectiveness until the
best solution is found.

In [7] the Round Robin, the Weighted Round Robin and the
Randomized algorithms are described. Specifically, the Round Robin
algorithm distributes sequentially the user requests to a list of
virtual machines. When a new request is assigned to the last virtual
machine of the list, the assignment of the next requests will start
again from the from the beginning of the list, namely from the first
virtual machine. It should be noted that the Weighted Round Robin
algorithm differs from the Round Robin, giving weight to each
virtual machine depending on its capabilities. Thus, the selection
of the Round Robin is improved, since the virtual machine with the
highest weight, namely with the highest technical specifications,
will serve a higher load of requests. Furthermore, the Randomized
algorithm randomly selects a virtual machine for serving each new
request.

In [6] the Throttled algorithm is proposed. It maintains a list
of virtual machines along with their availability status and their
workload. When a new user request arrives, the algorithm finds
an available virtual machine and assigns to it the request. If the
virtual machine becomes unavailable, the algorithm looks for the
next available virtual machine. If none of the virtual machines are
available, then the algorithm maintains the request in a waiting list
until a machine is released.

The Response Time and Weighted Response Time [7] algorithm
is based on the response time of the virtual machines. It distributes
requests to achieve a shorter response time. The algorithm uses
two ways of monitoring, namely the internal and the external
monitoring. The internal monitoring uses the movement of data
between the system and the user to detect the response time. On
the other hand, in external monitoring, the algorithm assigns a

request specifically to a virtual machine to measure the response
time. Response time should be measured frequently to make the
distribution of work more efficient and preferably the most recent
measurement should be used. In the weighted response time al-
gorithm, the information about the times comes from the status
checks of the machines and the weight must be in the most recent
measurement.

Honeybee Foraging Algorithm [10] comes from the behavior of
bees. There are two types of bees, namely the detectors and the
food collectors. Detectors leave the nest and try to find food sources.
After locating the source, they return to the nest and present the
quantity and quality or the distance. Then the collectors come out
and collect the honey from the springs. Having collected the honey
and returned to the nest then they show howmuch is left. A request
in the Cloud can be done through the average processing checks
that a request will need and the average performance check of each
node in the system. The algorithm with appropriate calculations
creates criteria and tries to find the request that will best suit one
of the machines on the system. When a machine is found to be
overloaded then the algorithm transfers the processes to another
one.

3 THE PROPOSED LOAD BALANCING
ALGORITHM

The proposed algorithm improves the Ant Colony Optimization
(ACO) [16] methodology, whose function is influenced by the natu-
ral behavior of ants. It is called Modified ACO (MACO) and uses
a weighted value, which is called pheromone, in order to evaluate
each Virtual Machine (VM) of a Cloud infrastructure.

Specifically, there are N VMs in the Cloud environment used for
the execution of the services, denoted as V = v1,v2, . . . ,vN . An
initial pheromone value p̂ is assigned to each VM indicating the ca-
pabilities of its resources. The values of the VMs’ pheromones
are represented using Interval Valued Trapezoidal Fuzzy Num-
bers (IVTFNs) [4]. In particular, an Interval-valued fuzzy numbers
(IVFN) is defined as A = [AL ,AU ] and consists of the lower AL
and the upper AU fuzzy numbers. IVFNs replace the crisp mem-
bership values with intervals in [0, 1]. They were proposed due
to the fact that fuzzy information can be better expressed by in-
tervals than by single values. The IVTFNs which are a general-
ized version of the IVFNs can be represented as: A = [AL ,AU ] =

[(xL1 ,x
L
2 ,x

L
3 ,x

L
4 ,vAL ), (xU1 ,x

U
2 ,x

U
3 ,x

U
4 ,vAU ))] where: 0 ≤ xL1 ≤

xL2 ≤ xL3 ≤ xL4 ≤ 1, 0 ≤ xU1 ≤ xU2 ≤ xU3 ≤ xU4 ≤ 1, 0 ≤ vAL ≤

vAU ≤ 1 and AL ⊂ AU . The operational rules of the IVTFNs are
defined in [14] Thus, the algorithm produces a list of pheromones
that describe the performance of each VM. In this way, the VMs are
listed by priority, since VMs with better resources obtain higher
pheromone values.

Subsequently, there areM users that request services of the Cloud
infrastructure, denoted as U = u1,u2, . . . ,uM . The algorithm as-
signs each user u to the VM with the higher pheromone. After each
assignment, the pheromone of the corresponding VM is updated us-
ing formula ?? where the resource utilization r̂ sutil ization that each
service s causes to its VM is considered. It has to be noted that the
resource utilization factor is also represented using IVTFNs, whilet
the ⊖ indicates the substitution operator of two fuzzy numbers as
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defined in [15]. As a result, a VM that serve the most demanding
services obtain the higher decrements to its pheromone.

p̂new = p̂prev ⊖ r̂ sutil izat ion

=
[(
pLprev,1 − r s,Lutil izat ion,1, p

L
prev,2 − r s,Lutil izat ion,2, p

L
prev,3

−r s,Lutil izat ion,3, p
L
prev,4 − r s,Lutil izat ion,4, vAL

)
,(

pUprev,1 − r s,Uutil izat ion,1, p
U
prev,2 − r s,Uutil izat ion,2, p

U
prev,3

−r s,Uutil izat ion,3, p
U
prev,4 − r s,Uutil izat ion,4, vAU

)]
Algorithm 1 presents the proposed methodology.

Algorithm 1 The pseudocode of the MACO algorithm.
SetV = {v1, v2, . . . , vN } the set of available VMs ,
SetU = {u1, u2, . . . , uM } the set of users requiring Cloud services
for each v ∈ V do

Set initial pheromone to v
end for
for each user u ∈ U do

Assign u to v with max pheromone
Update v pheromone using formula (1)

end for
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Figure 1: The simulated topology.

Figure 2: The number of user requests for obtaing access to
the Navigation Assistance services.

Figure 3: The proccessing times.

4 SIMULATION SETUP AND EVALUATION
RESULTS

In our experiments, the 5G wireless network architecture presented
in figure 1 is considered. It includes a Cloud infrastructure and an
access network infrastructure.

The Cloud infrastructure has been implemented using the Cloud-
Analyst [11] module of the CloudSim [1] platform. It includes a set
of Virtual Machines (VMs) providing Navigation Assistance [13, 17]
services. Specifically, in a Navigation Assistance service, informa-
tion from the vehicles, the pedestrians and the city environment
can be collected in order to assess the navigation of both vehicles
and pedestrian users considering situations such as the current
road traffic or road accidents. Indicatively, the Cloud infrastructure
processes the entire mobility information received from all vehicles
and extracts traffic information about a specific geographic area.
Subsequently, the Cloud infrastructure informs all the vehicles that
travel in the specified area about the traffic conditions. Furthermore,
a Navigation Assistance orchestrates the available traffic lights in
order to tackle issues such as traffic congestion.

The access network infrastructure has been implemented using
the Network Simulator 3 (NS-3) [2] simulator. It consists of 4 LTE-A
FD-MIMO Macrocells providing access to the Cloud services. Fur-
thermore, a Software Defined Network (SDN) controller provides
centralized control of the entire system. The linguistic terms for
the determination of the performance of each VM as well as for the
determination of the resource utilization that each service causes
to its VM are represented by IVTFNs as shown in table 1.

The performance of the MACO algorithm is compared with the
one observed from the Round Robin [7], the Throttled [6] and the
ACO [16] algorithms, considering five different scenarios. Figure
2 presents the number of user requests for obtaining access to the
Navigation Assistance services performed per hour according to
each scenario, for a 24-hour period. As it can be observed, scenarios
2, 3 and 4 determine similar number of requests per hour. Also, the
scenario 5 determines higher number of requests per hour, while
scenario 1 determines intermediate number of requests per hour.

During the first scenario, the Cloud includes 10 VMs offering
Good (G) performance each. Subsequently, during the second sce-
nario the Cloud infrastructure includes 20 VMs offering Good (G)
performance each. Additionally, the third, the fourth and the fifth
scenarios include 50 VMs each. Specifically, in case of the third
scenario each VM offers Medium (M) performance, while in cases
of the fourth and the fifth scenario each VM offers Absolutely Good
(AG) performance. Figure 3 presents the results of the considered al-
gorithms with respect to the numbers of service requests performed
in each scenario. As it can be observed the MACO algorithm out-
performs the other ones in all cases, in terms of the processing
time required for serving the number of requests per hour for the
24-hour period.

In particular, during the first scenario the algorithm with the
slowest response is Round Robin, followed by Throttled. ACO algo-
rithms perform better than the other two, while MACO succeeds
lower response times from the other algorithms. Subsequently, dur-
ing the second scenario the order of performance of the algorithms
remains the same as in the first scenario, while at the same time an
increase in time differences between algorithms is noticed, since
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Table 1: Linguistic terms and the corresponding interval-valued trapezoidal fuzzy numbers used for the determination of the
performance of each VM as well as of the resource utilization that each service causes .

Ling. term for the performance of each VM Interval-valued trapezoidal fuzzy number Ling. term for the resource utilization Interval-valued trapezoidal fuzzy number

Absolutely Poor (AP) [(0.0, 0.0, 0.0, 0.0, 0.8), (0.0, 0.0, 0.0, 0.0, 1)] Absolute Low (AL) [(0.0, 0.0, 0.062, 0.093, 0.8 ), (0.0, 0.0, 0.083, 0.125, 1)]
Very Poor (VP) [(0.01, 0.02, 0.03, 0.07, 0.8), (0.0, 0.01, 0.05, 0.08, 1)] Very Low(VL) [(0.072, 0.104, 0.229, 0.26, 0.8 ), (0.041, 0.083, 0.25, 0.291, 1)]

Poor (P) [(0.04, 0.1, 0.18, 0.23, 0.8), (0.02, 0.08, 0.2, 0.25, 1)] Medium Low (ML) [(0.239, 0.27, 0.395, 0.427, 0.8 ), (0.208, 0.25, 0.416, 0.458, 1)]
Medium Poor (MP) [(0.17, 0.22, 0.36, 0.42, 0.8), (0.14, 0.18, 0.38, 0.45, 1)] Medium (M) [(0.406, 0.437, 0.562, 0.593, 0.8 ), (0.375, 0.416, 0.583, 0.625, 1)]

Medium (M) [(0.32, 0.41, 0.58, 0.65, 0.8), (0.28, 0.38, 0.6, 0.7, 1)] Medium High (MH) [(0.572, 0.604, 0.729, 0.76, 0.8 ), (0.541, 0.583, 0.75, 0.791, 1)]
Medium Good (MG) [(0.58, 0.63, 0.8, 0.86, 0.8), (0.5, 0.6, 0.9, 0.92, 1)] Very High (VH) [(0.739, 0.77, 0.895, 0.927, 0.8 ), (0.708, 0.75, 0.916, 0.958, 1)]

Good (G) [(0.72, 0.78, 0.92, 0.97, 0.8), (0.7, 0.75, 0.95, 0.98, 1)] Absolute High (AH) [(0.906, 0.937, 1.0, 1.0, 0.8 ), (0.875, 0.916, 1, 1, 1)]
Very Good (VG) [(0.93, 0.98, 1, 1, 0.8), (0.9, 0.95, 1, 1, 1)]

Absolutely Good (AG) [(1, 1, 1, 1, 0.8), (1, 1, 1, 1, 1)]

more VMs (and thus more resources) are available. Furthermore,
in the third scenario the MACO algorithm also outperforms the
other three techniques. In this case, the ACO in the early stages of
the scenario has increased delays performance to the Round Robin
and Throttled and then approaches the MACO’s performance. On
the other hand, in the fourth scenario the response times have
been reduced for all the algorithms since each VM offers increased
performance. In this case, the Round Robin performs better than
Throttled and the ACO algorithms. Round Robin’s performance
increase is likely to be due to the fact that increasing the number
of the machines maintains fewer virtual ones, while reduces the
total number of requests for each VM and PM. As a result, the load
on each machine is reduced, and so is their process. As Throttled
and ACO algorithms assign services in a waiting list if there is no
waiting machine, the services are not processed at the same time,
so in this scenario the system performs better. However, the MACO
succeeds better results from the other algorithms. Finally, during
the fifth scenario the ordering of the considered algorithms remains
the similar with the previous scenarios with the MACO algorithm
succeeding the better performance.

5 CONCLUSION
In this paper, the Modified Ant Colony Optimization (MACO) de-
scribed. The proposed algorithm applied to a 5G-VCC system ar-
chitecture. Its performance evaluated in comparison with the ACO,
the Throttled and the Round Robin algorithms considering five
different scenarios. According to the simulation results the pro-
posed algorithm outperforms the existing solutions in terms of
time required for requests about Navigation Assistance services.
Future work includes the evaluation of the proposed algorithm
in a real-time environment where the data is changing, as user
requests will vary both in size and in functions that need to be
performed by the system to process them. Finally, it is necessary to
develop functions that predict and manage errors that may occur
in a real environment, such as failures that can occurr during the
VMs operation.
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