
ΣΧΕΔΙΑΣΗ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ ΑΣΦΑΛΕΙΑΣ

ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ
Τμήμα Πληροφορικής

Application Threat Modelling

An approach for analyzing the security of an application.

It is a structured approach that enables you to identify, classify,

rate, compare and prioritize the security risks associated with an

application.

Inducing Application Threat Modeling into SDLC process has its

advantages for the security of the entire project.

Threat Modeling Goals

 GOAL I: Systematically identify and rate the threats that are

most likely to affect your application.

 GOAL II: Address threats with appropriate countermeasures

Threat Modeling Goals

To perform Application Threat Modeling use testing

methodologies/techniques/frameworks/methods (e.g. OWASP

testing framework) to identify, STRIDE methodology to Classify

and DREAD methodology to rate, compare and prioritize risks,

based on severity.

 Software
Development
Life Cycle
(SDLC)
Testing
Workflow

Main Phases

Phase I: Decompose the
Application

Application Architecture

External Dependencies

Trust Levels

Entry Points

Assets

Data Flow Diagrams

Phase II: Determine and
rank threats.

Threat Identification

Threat Categorization

Security Controls

Threat Analysis

Ranking of Threats (DREAD)

Phase III: Determine
countermeasures and

mitigation

Countermeasure
Identification

Mitigation Strategies

Phase I: Decompose the
Application
• Goal: gain an understanding of the application and how it

interacts with external entities.

• This goal is achieved by information gathering and

documentation.

• The information gathering process is carried out using a

clearly defined structure, which ensures the correct

information is collected.

Step 1.1. Application
Architecture
• Goal: Identification of the basic entities of the application

Examples:

 Application Servers

 Database Servers

 Application Technologies

 Application version

 Application Owner

Step 1.2. External
Dependencies
• Goal: Identification of any external dependencies of the

application

• Examples:

 Web Servers (e.g. Apache)

 Connection between database and web server

 Firewall

 Other applications

Step 1.3. Trust Levels

• Goal: Identify the appropriate access rights of the application

entities (actors)

• “The trust levels are cross referenced with the entry points

and assets. This allows us to define the access rights or

privileges required at each entry point, and those required to

interact with each asset”

Trust Levels examples
ID Name Description

1 Anonymous Web User
A user who has connected to the college library website but has not provided

valid credentials.

2
User with Valid Login

Credentials

A user who has connected to the college library website and has logged in using

valid login credentials.

3
User with Invalid Login

Credentials

A user who has connected to the college library website and is attempting to

log in using invalid login credentials.

4 Librarian
The librarian can create users on the library website and view their personal

information.

5
Database Server

Administrator

The database server administrator has read and write access to the database

that is used by the website.

6 Website Administrator The Website administrator can configure the website.

7 Database Read User The database user account used to access the database for read access.

8
Database Read/Write

User

The database user account used to access the database for read and write

access.

Step 1.4. Entry Points

• Goal: Identify the entry points through which a potential

attacker could interact with the application or gain access to

data

• Examples:

 HTTPS Port

 Main page: The splash page for the website is the entry point

for all users.

 Login Function: The login function accepts user supplied

credentials and compares them with those in the database.

 Search Entry Page: This functionality allows users to enter a

search query.

Step 1.5. Assets

• Goal: identify the critical assets (physical and abstract

assets). Application information that the attacker is

interested in

• Examples:

 Availability of the application

 User Login Details

 User Personal Data

 Access to the Database Server

 Login Session

 Reputation of the organization

Step 1.6. Data Flow Diagrams

• Goal: better understand the application processes and workflow

• Basic DFDs shapes:
 External Entity: user (actor), other application
 Process: basic application process that handles data (reads or writes data)

 Multiple process: this shape represents a collection of sub processes
 Data Store: The data store shape is used to represent locations where data

is stored.
 Data Flow: This shape represents data movement within the application
 Privilege Boundary: The privilege boundary shape is used to represent the

change of privilege levels as the data flows through the application.

DFD Example
• “Search and View user list” by Application

Admin Use Case
1. Application Admin clicks “User Management”

link
2. The User Management page is displayed
3. Application Admin enters search criteria and

click “Submit”
4. Application Admin is able to view the users list

based on the requested search criteria

5. Application Admin is able to click the “Details”
button for a specific user (in order to see the
selected user details)

6. Application Admin is able to click the “print”
button (in order to print the list)

7. Application Admin is able to click the “Export”
button (in order to export the list)

8. Application Admin is able to click the “Add”
button (in order to add a new user)

9. Application Admin is able to click the “Delete”
button for a specific user (in order to delete
the user)

Phase II: Determine and rank
threats.
• Goal: Identify and ranking threats

 Identify Threats

 Identify Possible Weaknesses

 Identify Security Controls

 Ranking Threats

Step 2.1. Threat Identification

• How can the malicious
actor use or manipulate
the asset to:

 Modify or control the
application?

 Retrieve information
within the application?

 Manipulate information
within the application?

 Cause the application to
fail or become unusable?

 Gain additional rights?

• Can a malicious actor
access the application
asset:

 Without being audited?

 And skip any access
control checks?

 And appear to be
another user?

Source: SANS Institute - Threat Modeling: A Process To Ensure Application Security

Step 2.2. Threat Categorization

 Categorizing threats makes it easier to understand what the threats
allow an attacker to do and aids in assigning priority

 The threat categorization is performed based on the STRIDE model:
o Spoofing: Threat action aimed to illegally access and use another

user's credentials, such as username and password

o Tampering: Threat action aimed to maliciously change/modify
persistent data, such as persistent data in a database, and the
alteration of data in transit between two computers over an open
network, such as the Internet

o Repudiation: Threat action aimed to perform illegal operations in a
system that lacks the ability to trace the prohibited operations

o Information Disclosure: Threat action to read a file that one was not
granted access to, or to read data in transit

o Denial of Service: Threat aimed to deny access to valid users, such as
by making a web server temporarily unavailable or unusable

o Elevation of privilege: Threat aimed to gain privileged access to
resources for gaining unauthorized access to information or to
compromise a system

Threats by Application Vulnerability
Category

Category Threats

Input validation Buffer overflow; cross-site scripting; SQL injection; canonicalization

Authentication Network eavesdropping; brute force attacks;dictionary attacks; cookie replay;

credential theft

Authorization Elevation of privilege; disclosure of confidential data; data tampering; luring

attacks

Configuration

management

Unauthorized access to administration interfaces; unauthorized access to

configuration stores; retrieval of clear text configuration data; lack of individual

accountability; over-privileged process and service accounts

Sensitive data Access sensitive data in storage; network eavesdropping; data tampering

Session management Session hijacking; session replay; man in the middle

Cryptography Poor key generation or key management; weak or custom encryption

Parameter

manipulation

Query string manipulation; form field manipulation; cookie manipulation; HTTP

header manipulation

Exception

management

Information disclosure; denial of service

Auditing and logging User denies performing an operation; attacker exploits an application without

trace; attacker covers his or her tracks

Step 2.3. Security Controls

 The primary goal of the code review is to ensure that

appropriate controls are in place and work properly in order to

mitigate the identified threats

 Detailed check list with security controls should be prepared

by taking into account the ASVS (Application Security

Verification Standard)

ASVS (Application Security
Verification Standard) Domains
 Authentication Verification

Requirements

 Session Management
Verification Requirements

 Access Control Verification
Requirements

 Malicious Input Handling
Verification Requirements

 Cryptography at Rest
Verification Requirements

 Error Handlingand Logging
Verification Requirements

 Data Protection Verification
Requirements

 Communications Security
Verification Requirements

 HTTP Security Verification
Requirements

 Malicious Controls
Verification Requirements

 Business Logic Verification
Requirements

 Files and Resources
Verification Requirements

 Mobile Verification
Requirements

Step 2.4. Threat Analysis

 Threat trees should be prepared for each identified threat

 Identification of vulnerabilities for each threat

Vulnerabilities examples:

o SQL injection

oWeak encryption algorithms

o Cross Site Scripting / HTML injection

o Browser caches sensitive information

o Lack of password complexity enforcement.

o Failure to validate cookie input.

Step 2.5. Ranking of Threats
(DREAD)

Step 2.5. Ranking of Threats
(DREAD)
 Damage: How big would the damage be if the attack

succeeded?

 Reproducibility: How easy is it to reproduce an attack to

work?

 Exploitability: How much time, effort, and expertise is needed

to exploit the threat?

 Affected Users: If a threat were exploited, what percentage of

users would be affected?

 Discoverability: How easy is it for an attacker to discover this

threat?

Damage Potential

If a threat exploit occurs, how much damage will be caused?

0 = Nothing

3 = Individual user data is compromised, affected or

availability denied

5 = All individual tenant data is compromised, affected or

availability denied

7 = All tenant data is compromised, affected or availability

denied

7 = Availability of a specific cloud controller

components/service is denied

8 = Availability of all cloud controller components is denied

9 = Underlying cloud management and infrastructure data

is compromised or affected

10 = Complete system or data destruction, failure or

compromise

Reproducible

How easy is it to reproduce the threat exploit?

0 = Very hard or impossible, even for administrators. The

vulnerability is unstable and statistically unlikey to be

reliably exploited

5 = One or two steps required, tooling / scripting readily

available

10 = Unauthenticated users can trivially and reliably

exploit using only a web browser

Exploitability

What is needed to exploit this threat?

0 = N/A We assert that every vulnerability is exploitable,

given time and effort. All scores should be 1-10

1 = Even with direct knowledge of the vulnerability we do

not see a viable path for exploitation

2 = Advanced techniques required, custom tooling. Only

exploitable by authenticated users

5 = Exploit is available/understood, usable with only

moderate skill by authenticated users

7 = Exploit is available/understood, usable by non-

authenticated users

10 = Trivial - just a web browser

Affected Users

How many users will be affected?

0 = None

2.5 individual/employer that is already compromised.

6 = some users of individual or employer privileges, but not

all.

8 = Administrative users

10 = All users

Discoverability

How easy is it to discover this threat?

0 = Very hard to impossible to detect even given access to

source code and privilege access to running systems

5 = Can figure it out by guessing or by monitoring network

traces

9 = Details of faults like this are already in the public

domain and can be easily discovered using a search engine

10 = The information is visible in the web browser address

bar or in a form

Rate, Compare and Prioritize
Threats

DREAD score:

 (Damage + Reproducibility + Exploitability + Affected Users +Discoverability)

 / 5 = RISK

0-3 as "Trivial, fix in next release“,

4-7 as “Important, fix as a priority“,

8-10 may be "Critical, fix immediately".

Phase III: Determine
countermeasures and mitigation

• Goal: Identify the appropriate countermeasure and determine

the effective mitigation strategies

Threat Countermeasures

Spoofing user identity Use strong authentication.

Do not store secrets (for example, passwords) in plaintext.

Do not pass credentials in plaintext over the wire.

Protect authentication cookies with Secure Sockets Layer (SSL).

Tampering with data Use data hashing and signing.

Use digital signatures.

Use strong authorization.

Use tamper-resistant protocols across communication links.

Secure communication links with protocols that provide

message integrity.

Repudiation Create secure audit trails.

Use digital signatures.

Information disclosure Use strong authorization.

Use strong encryption.

Secure communication links with protocols that provide

message confidentiality.

Do not store secrets (for example, passwords) in plaintext.

Denial of service Use resource and bandwidth throttling techniques.

Validate and filter input.

Elevation of privilege Follow the principle of least privilege and use least privileged

service accounts to run processes and access resources.

Step 3.1. Countermeasure
Identification
• Purpose: Determine the protective measures in order to mitigate

each identified threat

• Countermeasures are based on the ASVS (Application Security

Verification Standard) requirements

• Three different choices are possible:

 Non mitigated threats: Threats which have no countermeasures and
represent vulnerabilities that can be fully exploited and cause an
impact

 Partially mitigated threats: Threats partially mitigated by one or
more countermeasures which represent vulnerabilities that can only
partially be exploited and cause a limited impact

 Fully mitigated threats: These threats have appropriate
countermeasures in place and do not expose vulnerability and cause
impact

Step 3.2. Mitigation Strategies

 The decision of which strategy is most appropriate depends on:
 the impact an exploitation of a threat can have,

 the likelihood of its occurrence,
 and the costs for transferring (i.e. costs for insurance) or avoiding (i.e. costs

or losses due redesign) it.

Decision is based on the risk a threat poses to the application

 Possible mitigation Strategies

 Do nothing: no action
 Inform about the risk: for example, warning user population about the risk
 Mitigate the risk: for example, by putting countermeasures in place

 Accept the risk: for example, after evaluating the impact of the exploitation
(business impact)

 Transfer the risk: for example, through contractual agreements and
insurance

 Terminate the risk: for example, shutdown, turn-off, unplug or decommission
the asset

Useful tools

 SDL Τhreat Modeling:

• http://www.microsoft.com/en-

us/download/details.aspx?id=2955

 Microsoft Threat Modeling Tool 2014:

• http://www.microsoft.com/en-

us/download/details.aspx?id=42518

http://www.microsoft.com/en-
http://www.microsoft.com/en-
http://www.microsoft.com/en-
http://www.microsoft.com/en-
http://www.microsoft.com/en-
http://www.microsoft.com/en-

References

• https://www.owasp.org/index.php/Application_Threat_Model

ing

• http://msdn.microsoft.com/en-us/library/ff649779.aspx

• http://msdn.microsoft.com/en-us/library/ff648866.aspx

• http://msdn.microsoft.com/en-us/library/ff647894.aspx

• https://www.sans.org/reading-

room/whitepapers/securecode/threat-modeling-process-

ensure-application-security-1646

• https://www.owasp.org/images/5/58/OWASP_ASVS_Version_

2.pdf

http://www.owasp.org/index.php/Application_Threat_Model
http://msdn.microsoft.com/en-us/library/ff649779.aspx
http://msdn.microsoft.com/en-us/library/ff649779.aspx
http://msdn.microsoft.com/en-us/library/ff649779.aspx
http://msdn.microsoft.com/en-us/library/ff648866.aspx
http://msdn.microsoft.com/en-us/library/ff648866.aspx
http://msdn.microsoft.com/en-us/library/ff648866.aspx
http://msdn.microsoft.com/en-us/library/ff647894.aspx
http://msdn.microsoft.com/en-us/library/ff647894.aspx
http://msdn.microsoft.com/en-us/library/ff647894.aspx
http://www.sans.org/reading-
http://www.sans.org/reading-
http://www.sans.org/reading-
http://www.owasp.org/images/5/58/OWASP_ASVS_Version_

ΣΧΕΔΙΑΣΗ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ ΑΣΦΑΛΕΙΑΣ

ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Thank you

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ
Τμήμα Πληροφορικής

